IDEAS home Printed from https://ideas.repec.org/p/mse/cesdoc/10070.html
   My bibliography  Save this paper

A Cross-Sectional Performance Measure for Portfolio Management

Author

Listed:

Abstract

Sharpe-like ratios have been traditionally used to measure the performances of portfolio managers. However, they are known to suffer major drawbacks. Among them, two are intricate: (1) they are relative to a peer's performance and (2) the best score is generally assumed to correspond to a "good" portfolio allocation, with no guarantee on the goodness of this allocation. Last but no least (3) these measures suffer significant estimation errors leading to the inability to distinguish two managers' performances. In this paper, we propose a cross-sectional measure of portfolio performance dealing with these three issues. First, we define the score of a portfolio over a single period as the percentage of investable portfolios outperformed by this portfolio. This score quantifies the goodness of the allocation remedying drawbacks (1) and (2). The new information brought by the cross-sectionality of this score is then discussed through applications. Secondly, we build a performance index, as the average cross-section score over successive periods, whose estimation partially answers drawback (3). In order to assess its informativeness and using empirical data, we compare its forecasts with those of the Sharpe and Sortino ratios. The results show that our measure is the most robust and informative. It validates the utility of such cross-sectional performance measure

Suggested Citation

  • Monica Billio & Ludovic Calès & Dominique Guegan, 2010. "A Cross-Sectional Performance Measure for Portfolio Management," Documents de travail du Centre d'Economie de la Sorbonne 10070, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  • Handle: RePEc:mse:cesdoc:10070
    as

    Download full text from publisher

    File URL: http://mse.univ-paris1.fr/pub/mse/CES2010/10070.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. James P. Quirk & Rubin Saposnik, 1962. "Admissibility and Measurable Utility Functions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 29(2), pages 140-146.
    2. Okunev, John & White, Derek, 2003. "Do Momentum-Based Strategies Still Work in Foreign Currency Markets?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(2), pages 425-447, June.
    3. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2007. "On the exact distribution of linear combinations of order statistics from dependent random variables," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1876-1894, November.
    4. Roberto Rigobon, 2003. "Identification Through Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 777-792, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monica Billio & Ludovic Calès & Dominique Guegan, 2010. "A performance measure of Zero-dollar Long/Short equally weighted portfolios," Documents de travail du Centre d'Economie de la Sorbonne 10030, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    2. Gerardo Manzo & Antonio Picca, 2020. "The Impact of Sovereign Shocks," Management Science, INFORMS, vol. 66(7), pages 3113-3132, July.
    3. Flavin, Thomas J. & Panopoulou, Ekaterini & Unalmis, Deren, 2008. "On the stability of domestic financial market linkages in the presence of time-varying volatility," Emerging Markets Review, Elsevier, vol. 9(4), pages 280-301, December.
    4. Demir, İshak, 2014. "Monetary policy responses to the exchange rate: Empirical evidence from the ECB," Economic Modelling, Elsevier, vol. 39(C), pages 63-70.
    5. Miescu, Mirela & Rossi, Raffaele, 2021. "COVID-19-induced shocks and uncertainty," European Economic Review, Elsevier, vol. 139(C).
    6. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.
    7. Sun, Hang & Bos, Jaap W.B. & Li, Zhuo, 2017. "In the Nick of Time: A Heteroskedastic SVAR Model and Its Application to the Crude Oil Futures Market," Research Memorandum 019, Maastricht University, Graduate School of Business and Economics (GSBE).
    8. Di Bella, Gabriel & Grigoli, Francesco, 2019. "Optimism, pessimism, and short-term fluctuations," Journal of Macroeconomics, Elsevier, vol. 60(C), pages 79-96.
    9. Delis, Manthos D. & Hasan, Iftekhar & Tsionas, Efthymios G., 2015. "Firms' risk endogenous to strategic management choices," Bank of Finland Research Discussion Papers 16/2015, Bank of Finland.
    10. Arezki,Rabah & Cho,Caleb Sungwoo & Ha Nguyen & Pham,Anh, 2022. "Corporate Debt and Stock Returns : Evidence from U.S. Firms during the 2020 Oil Crash," Policy Research Working Paper Series 10079, The World Bank.
    11. Francisco Rodríguez, 2006. "Openness and Growth: What Have We Learned?," Wesleyan Economics Working Papers 2006-011, Wesleyan University, Department of Economics.
    12. Mohammad Karimi & Marcel‐Cristian Voia, 2019. "Empirics of currency crises: A duration analysis approach," Review of Financial Economics, John Wiley & Sons, vol. 37(3), pages 428-449, July.
    13. Herwartz, Helmut & Lange, Alexander & Maxand, Simone, 2019. "Statistical identification in SVARs - Monte Carlo experiments and a comparative assessment of the role of economic uncertainties for the US business cycle," University of Göttingen Working Papers in Economics 375, University of Goettingen, Department of Economics.
    14. David J. Pannell, 1991. "Pests and pesticides, risk and risk aversion," Agricultural Economics, International Association of Agricultural Economists, vol. 5(4), pages 361-383, August.
    15. M. Shahe Emran & Forhad Shilpi, 2012. "The extent of the market and stages of agricultural specialization," Canadian Journal of Economics, Canadian Economics Association, vol. 45(3), pages 1125-1153, August.
    16. Ülkü, Numan & Weber, Enzo, 2013. "Identifying the interaction between stock market returns and trading flows of investor types: Looking into the day using daily data," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2733-2749.
    17. Michael Lobsiger & Marc Zahner, 2012. "Institutions And Economic Development: Disentangling The Role Of Contracting And Property Rights Institutions," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 37(2), pages 1-34, June.
    18. Lizyayev, Andrey & Ruszczyński, Andrzej, 2012. "Tractable Almost Stochastic Dominance," European Journal of Operational Research, Elsevier, vol. 218(2), pages 448-455.
    19. Benjamin Hébert & Jesse Schreger, 2017. "The Costs of Sovereign Default: Evidence from Argentina," American Economic Review, American Economic Association, vol. 107(10), pages 3119-3145, October.
    20. Dungey, Mardi & Milunovich, George & Thorp, Susan & Yang, Minxian, 2015. "Endogenous crisis dating and contagion using smooth transition structural GARCH," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 71-79.

    More about this item

    Keywords

    Performance measure; portfolio management; relative-value strategy; large portfolios; absolute return strategy; multivariate statistics; Generalized Hyperbolic Distribution;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:10070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucie Label (email available below). General contact details of provider: https://edirc.repec.org/data/cenp1fr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.