IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v87y2024i7d10.1007_s00184-023-00934-0.html
   My bibliography  Save this article

Modelling and diagnostic tests for Poisson and negative-binomial count time series

Author

Listed:
  • Boris Aleksandrov

    (Helmut Schmidt University)

  • Christian H. Weiß

    (Helmut Schmidt University)

  • Simon Nik

    (Helmut Schmidt University)

  • Maxime Faymonville

    (TU Dortmund University)

  • Carsten Jentsch

    (TU Dortmund University)

Abstract

When modelling unbounded counts, their marginals are often assumed to follow either Poisson (Poi) or negative binomial (NB) distributions. To test such null hypotheses, we propose goodness-of-fit (GoF) tests based on statistics relying on certain moment properties. By contrast to most approaches proposed in the count-data literature so far, we do not restrict ourselves to specific low-order moments, but consider a flexible class of functions of generalized moments to construct model-diagnostic tests. These cover GoF-tests based on higher-order factorial moments, which are particularly suitable for the Poi- or NB-distribution where simple closed-form expressions for factorial moments of any order exist, but also GoF-tests relying on the respective Stein’s identity for the Poi- or NB-distribution. In the time-dependent case, under mild mixing conditions, we derive the asymptotic theory for GoF tests based on higher-order factorial moments for a wide family of stationary processes having Poi- or NB-marginals, respectively. This family also includes a type of NB-autoregressive model, where we provide clarification of some confusion caused in the literature. Additionally, for the case of independent and identically distributed counts, we prove asymptotic normality results for GoF-tests relying on a Stein identity, and we briefly discuss how its statistic might be used to define an omnibus GoF-test. The performance of the tests is investigated with simulations for both asymptotic and bootstrap implementations, also considering various alternative scenarios for power analyses. A data example of daily counts of downloads of a TeX editor is used to illustrate the application of the proposed GoF-tests.

Suggested Citation

  • Boris Aleksandrov & Christian H. Weiß & Simon Nik & Maxime Faymonville & Carsten Jentsch, 2024. "Modelling and diagnostic tests for Poisson and negative-binomial count time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(7), pages 843-887, October.
  • Handle: RePEc:spr:metrik:v:87:y:2024:i:7:d:10.1007_s00184-023-00934-0
    DOI: 10.1007/s00184-023-00934-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-023-00934-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-023-00934-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schweer, Sebastian & Weiß, Christian H., 2014. "Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 267-284.
    2. Sebastian Schweer, 2016. "A Goodness-of-Fit Test for Integer-Valued Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 77-98, January.
    3. Sebastian Schweer & Christian H. Weiß, 2016. "Testing for Poisson arrivals in INAR(1) processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 503-524, September.
    4. Christian H. Weiß & Annika Homburg & Pedro Puig, 2019. "Testing for zero inflation and overdispersion in INAR(1) models," Statistical Papers, Springer, vol. 60(3), pages 823-848, June.
    5. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2021. "Goodness–of–Fit Tests for Bivariate Time Series of Counts," Econometrics, MDPI, vol. 9(1), pages 1-20, March.
    6. Simos Meintanis & Dimitris Karlis, 2014. "Validation tests for the innovation distribution in INAR time series models," Computational Statistics, Springer, vol. 29(5), pages 1221-1241, October.
    7. Christian Gouriéroux & Yang Lu, 2019. "Negative Binomial Autoregressive Process with Stochastic Intensity," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(2), pages 225-247, March.
    8. Boris Aleksandrov & Christian H. Weiß & Carsten Jentsch, 2022. "Goodness‐of‐fit tests for Poisson count time series based on the Stein–Chen identity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 35-64, February.
    9. Puig, Pedro & Weiß, Christian H., 2020. "Some goodness-of-fit tests for the Poisson distribution with applications in Biodosimetry," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2017. "Tests for Structural Changes in Time Series of Counts," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 843-865, December.
    2. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2021. "Goodness–of–Fit Tests for Bivariate Time Series of Counts," Econometrics, MDPI, vol. 9(1), pages 1-20, March.
    3. Masoomeh Forughi & Zohreh Shishebor & Atefeh Zamani, 2022. "Portmanteau tests for generalized integer-valued autoregressive time series models," Statistical Papers, Springer, vol. 63(4), pages 1163-1185, August.
    4. Jentsch, Carsten & Weiß, Christian, 2017. "Bootstrapping INAR models," Working Papers 17-02, University of Mannheim, Department of Economics.
    5. Wagner Barreto-Souza, 2019. "Mixed Poisson INAR(1) processes," Statistical Papers, Springer, vol. 60(6), pages 2119-2139, December.
    6. Sebastian Schweer, 2016. "A Goodness-of-Fit Test for Integer-Valued Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 77-98, January.
    7. Christian H. Weiß, 2018. "Goodness-of-fit testing of a count time series’ marginal distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 619-651, August.
    8. Kai Yang & Yao Kang & Dehui Wang & Han Li & Yajing Diao, 2019. "Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued autoregressive processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(7), pages 863-889, October.
    9. Yang Lu, 2021. "The predictive distributions of thinning‐based count processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 42-67, March.
    10. Zeng, Xiaoqiang & Kakizawa, Yoshihide, 2024. "Two-step conditional least squares estimation in ADCINAR(1) process, revisited," Statistics & Probability Letters, Elsevier, vol. 206(C).
    11. Wagner Barreto-Souza, 2015. "Zero-Modified Geometric INAR(1) Process for Modelling Count Time Series with Deflation or Inflation of Zeros," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 839-852, November.
    12. Qingchun Zhang & Dehui Wang & Xiaodong Fan, 2020. "A negative binomial thinning‐based bivariate INAR(1) process," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(4), pages 517-537, November.
    13. Manik Awale & N. Balakrishna & T. V. Ramanathan, 2019. "Testing the constancy of the thinning parameter in a random coefficient integer autoregressive model," Statistical Papers, Springer, vol. 60(5), pages 1515-1539, October.
    14. Sebastian Schweer & Christian H. Weiß, 2016. "Testing for Poisson arrivals in INAR(1) processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 503-524, September.
    15. Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.
    16. Christian H. Weiß & Annika Homburg & Pedro Puig, 2019. "Testing for zero inflation and overdispersion in INAR(1) models," Statistical Papers, Springer, vol. 60(3), pages 823-848, June.
    17. Muhammad Aslam, 2022. "Neutrosophic F-Test for Two Counts of Data from the Poisson Distribution with Application in Climatology," Stats, MDPI, vol. 5(3), pages 1-11, August.
    18. Boris Aleksandrov & Christian H. Weiß, 2020. "Parameter estimation and diagnostic tests for INMA(1) processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 196-232, March.
    19. Boris Aleksandrov & Christian H. Weiß & Carsten Jentsch, 2022. "Goodness‐of‐fit tests for Poisson count time series based on the Stein–Chen identity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 35-64, February.
    20. José M. R. Murteira & Mário A. G. Augusto, 2017. "Hurdle models of repayment behaviour in personal loan contracts," Empirical Economics, Springer, vol. 53(2), pages 641-667, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:87:y:2024:i:7:d:10.1007_s00184-023-00934-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.