IDEAS home Printed from https://ideas.repec.org/p/mit/sloanp/37303.html
   My bibliography  Save this paper

A Geometric Analysis of Renegar's Condition Number, and its Interplay with Conic Curvature

Author

Listed:
  • Belloni, Alexandre
  • Freund, Robert M

Abstract

For a conic linear system of the form Ax ÂˆÈ K, K a convex cone, several condition measures have been extensively studied in the last dozen years. Among these, Renegar's condition number C(A) is arguably the most prominent for its relation to data perturbation, error bounds, problem geometry, and computational complexity of algorithms. Nonetheless, C(A) is a representation-dependent measure which is usually difficult to interpret and may lead to overly-conservative bounds of computational complexity and/or geometric quantities associated with the set of feasible solutions. Herein we show that Renegar's condition number is bounded from above and below by certain purely geometric quantities associated with A and K, and highlights the role of the singular values of A and their relationship with the condition number. Moreover, by using the notion of conic curvature, we show how Renegar's condition number can be used to provide both lower and upper bounds on the width of the set of feasible solutions. This complements the literature where only lower bounds have heretofore been developed.

Suggested Citation

  • Belloni, Alexandre & Freund, Robert M, 2007. "A Geometric Analysis of Renegar's Condition Number, and its Interplay with Conic Curvature," Working papers 37303, Massachusetts Institute of Technology (MIT), Sloan School of Management.
  • Handle: RePEc:mit:sloanp:37303
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/1721.1/37303
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vial, Jean-Philippe, 1982. "Strong convexity of sets and functions," Journal of Mathematical Economics, Elsevier, vol. 9(1-2), pages 187-205, January.
    2. VIAL, Jean-Philippe, 1982. "Strong convexity of sets and functions," LIDAM Reprints CORE 475, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan Derpich & Juan Valencia & Mario Lopez, 2023. "The Set Covering and Other Problems: An Empiric Complexity Analysis Using the Minimum Ellipsoidal Width," Mathematics, MDPI, vol. 11(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sorin-Mihai Grad & Felipe Lara, 2022. "An extension of the proximal point algorithm beyond convexity," Journal of Global Optimization, Springer, vol. 82(2), pages 313-329, February.
    2. D. H. Yuan & X. L. Liu & A. Chinchuluun & P. M. Pardalos, 2006. "Nondifferentiable Minimax Fractional Programming Problems with (C, α, ρ, d)-Convexity," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 185-199, April.
    3. A. Iusem & F. Lara, 2022. "Proximal Point Algorithms for Quasiconvex Pseudomonotone Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 443-461, June.
    4. Jen-Chwan Liu & Chun-Yu Liu, 2013. "Optimality and Duality for Multiobjective Fractional Programming Involving Nonsmooth Generalized -Univex Functions," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2013, pages 1-10, November.
    5. S. Nobakhtian, 2008. "Generalized (F,ρ)-Convexity and Duality in Nonsmooth Problems of Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 61-68, January.
    6. A. Kabgani & F. Lara, 2022. "Strong subdifferentials: theory and applications in nonconvex optimization," Journal of Global Optimization, Springer, vol. 84(2), pages 349-368, October.
    7. Teodoro Lara & Nelson Merentes & Kazimierz Nikodem, 2016. "Strong -Convexity and Separation Theorems," International Journal of Analysis, Hindawi, vol. 2016, pages 1-5, November.
    8. Hugo Leiva & Nelson Merentes & Kazimierz Nikodem & José Sánchez, 2013. "Strongly convex set-valued maps," Journal of Global Optimization, Springer, vol. 57(3), pages 695-705, November.
    9. Altannar Chinchuluun & Dehui Yuan & Panos Pardalos, 2007. "Optimality conditions and duality for nondifferentiable multiobjective fractional programming with generalized convexity," Annals of Operations Research, Springer, vol. 154(1), pages 133-147, October.
    10. Giorgi Giorgio, 2018. "A Classroom Note on Twice Continuously Differentiable Strictly Convex and Strongly Quasiconvex Functions," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 10(3), pages 42-52, June.
    11. F. Lara, 2022. "On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 891-911, March.

    More about this item

    Keywords

    Renegar's condition number;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mit:sloanp:37303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: None (email available below). General contact details of provider: https://edirc.repec.org/data/ssmitus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.