IDEAS home Printed from https://ideas.repec.org/a/hin/ijanal/7160348.html
   My bibliography  Save this article

Strong -Convexity and Separation Theorems

Author

Listed:
  • Teodoro Lara
  • Nelson Merentes
  • Kazimierz Nikodem

Abstract

Jensen inequality for strongly -convex functions and a characterization of pairs of functions that can be separated by a strongly -convex function are presented. As a consequence, a stability result of the Hyers-Ulam type is obtained.

Suggested Citation

  • Teodoro Lara & Nelson Merentes & Kazimierz Nikodem, 2016. "Strong -Convexity and Separation Theorems," International Journal of Analysis, Hindawi, vol. 2016, pages 1-5, November.
  • Handle: RePEc:hin:ijanal:7160348
    DOI: 10.1155/2016/7160348
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/ANALYSIS/2016/7160348.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/ANALYSIS/2016/7160348.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/7160348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vial, Jean-Philippe, 1982. "Strong convexity of sets and functions," Journal of Mathematical Economics, Elsevier, vol. 9(1-2), pages 187-205, January.
    2. VIAL, Jean-Philippe, 1982. "Strong convexity of sets and functions," LIDAM Reprints CORE 475, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sorin-Mihai Grad & Felipe Lara, 2022. "An extension of the proximal point algorithm beyond convexity," Journal of Global Optimization, Springer, vol. 82(2), pages 313-329, February.
    2. D. H. Yuan & X. L. Liu & A. Chinchuluun & P. M. Pardalos, 2006. "Nondifferentiable Minimax Fractional Programming Problems with (C, α, ρ, d)-Convexity," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 185-199, April.
    3. A. Iusem & F. Lara, 2022. "Proximal Point Algorithms for Quasiconvex Pseudomonotone Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 443-461, June.
    4. Jen-Chwan Liu & Chun-Yu Liu, 2013. "Optimality and Duality for Multiobjective Fractional Programming Involving Nonsmooth Generalized -Univex Functions," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2013, pages 1-10, November.
    5. S. Nobakhtian, 2008. "Generalized (F,ρ)-Convexity and Duality in Nonsmooth Problems of Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 61-68, January.
    6. A. Kabgani & F. Lara, 2022. "Strong subdifferentials: theory and applications in nonconvex optimization," Journal of Global Optimization, Springer, vol. 84(2), pages 349-368, October.
    7. Hugo Leiva & Nelson Merentes & Kazimierz Nikodem & José Sánchez, 2013. "Strongly convex set-valued maps," Journal of Global Optimization, Springer, vol. 57(3), pages 695-705, November.
    8. Altannar Chinchuluun & Dehui Yuan & Panos Pardalos, 2007. "Optimality conditions and duality for nondifferentiable multiobjective fractional programming with generalized convexity," Annals of Operations Research, Springer, vol. 154(1), pages 133-147, October.
    9. Giorgi Giorgio, 2018. "A Classroom Note on Twice Continuously Differentiable Strictly Convex and Strongly Quasiconvex Functions," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 10(3), pages 42-52, June.
    10. Belloni, Alexandre & Freund, Robert M, 2007. "A Geometric Analysis of Renegar's Condition Number, and its Interplay with Conic Curvature," Working papers 37303, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    11. F. Lara, 2022. "On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 891-911, March.
    12. Li, Xiang & Li, Yu-Ning & Zhang, Li-Xin & Zhao, Jun, 2024. "Inference for high-dimensional linear expectile regression with de-biasing method," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:ijanal:7160348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.