Optimizing Tax Administration Policies with Machine Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
- Miguel Almunia & David Lopez-Rodriguez, 2018.
"Under the Radar: The Effects of Monitoring Firms on Tax Compliance,"
American Economic Journal: Economic Policy, American Economic Association, vol. 10(1), pages 1-38, February.
- Almunia, Miguel & Lopez-Rodriguez, David, 2015. "Under the Radar: The Effects of Monitoring Firms on Tax Compliance," CAGE Online Working Paper Series 245, Competitive Advantage in the Global Economy (CAGE).
- Almunia, Miguel & Lopez-Rodriguez, David, 2015. "Under the Radar: The Effects of Monitoring Firms on Tax Compliance," The Warwick Economics Research Paper Series (TWERPS) 1070, University of Warwick, Department of Economics.
- Almunia, Miguel & Lopez-Rodriguez, David, 2015. "Under the Radar: The Effects of Monitoring Firms on Tax Compliance," Economic Research Papers 270213, University of Warwick - Department of Economics.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- Sebastian Beer & Matthias Kasper & Erich Kirchler & Brian Erard, 0.
"Do Audits Deter or Provoke Future Tax Noncompliance? Evidence on Self-Employed Taxpayers,"
CESifo Economic Studies, CESifo Group, vol. 66(3), pages 248-264.
- Sebastian Beer & Matthias Kasper & Erich Kirchler & Brian Erard, 2019. "Do Audits Deter or Provoke Future Tax Noncompliance? Evidence on Self-employed Taxpayers," IMF Working Papers 2019/223, International Monetary Fund.
- Keen, Michael & Slemrod, Joel, 2017.
"Optimal tax administration,"
Journal of Public Economics, Elsevier, vol. 152(C), pages 133-142.
- Michael Keen & Joel Slemrod, 2016. "Optimal Tax Administration," NBER Working Papers 22408, National Bureau of Economic Research, Inc.
- Mr. Michael Keen & Mr. Joel Slemrod, 2017. "Optimal Tax Administration," IMF Working Papers 2017/008, International Monetary Fund.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
- Jonah E. Rockoff & Brian A. Jacob & Thomas J. Kane & Douglas O. Staiger, 2011.
"Can You Recognize an Effective Teacher When You Recruit One?,"
Education Finance and Policy, MIT Press, vol. 6(1), pages 43-74, January.
- Jonah E. Rockoff & Brian A. Jacob & Thomas J. Kane & Douglas O. Staiger, 2008. "Can You Recognize an Effective Teacher When You Recruit One?," NBER Working Papers 14485, National Bureau of Economic Research, Inc.
- Dana Chandler & Steven D. Levitt & John A. List, 2011. "Predicting and Preventing Shootings among At-Risk Youth," American Economic Review, American Economic Association, vol. 101(3), pages 288-292, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Elliott Ash & Sergio Galletta & Tommaso Giommoni, 2021. "A Machine Learning Approach to Analyze and Support Anti-Corruption Policy," CESifo Working Paper Series 9015, CESifo.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Battiston, Pietro & Gamba, Simona & Santoro, Alessandro, 2024. "Machine learning and the optimization of prediction-based policies," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
- de Blasio, Guido & D'Ignazio, Alessio & Letta, Marco, 2022. "Gotham city. Predicting ‘corrupted’ municipalities with machine learning," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
- Monica Andini & Emanuele Ciani & Guido de Blasio & Alessio D'Ignazio & Viola Salvestrini, 2017. "Targeting policy-compliers with machine learning: an application to a tax rebate programme in Italy," Temi di discussione (Economic working papers) 1158, Bank of Italy, Economic Research and International Relations Area.
- Andini, Monica & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Salvestrini, Viola, 2018. "Targeting with machine learning: An application to a tax rebate program in Italy," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 86-102.
- Guido de Blasio & Alessio D'Ignazio & Marco Letta, 2020. "Predicting Corruption Crimes with Machine Learning. A Study for the Italian Municipalities," Working Papers 16/20, Sapienza University of Rome, DISS.
- Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
- Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Rama K. Malladi, 2024. "Benchmark Analysis of Machine Learning Methods to Forecast the U.S. Annual Inflation Rate During a High-Decile Inflation Period," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 335-375, July.
- Giovanni Di Franco & Michele Santurro, 2021. "Machine learning, artificial neural networks and social research," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(3), pages 1007-1025, June.
- Sean Tanner & Jenna Terrell & Emily Vislosky & Jonathan Gellar & Brian Gill, "undated". "Predicting Early Fall Student Enrollment in the School District of Philadelphia," Mathematica Policy Research Reports 63a18bf538bd41f98d72ff91d, Mathematica Policy Research.
- de Lucio, Juan, 2021. "Estimación adelantada del crecimiento regional mediante redes neuronales LSTM," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 49, pages 45-64.
- Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
- Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
- McKenzie, David & Sansone, Dario, 2017.
"Man vs. Machine in Predicting Successful Entrepreneurs: Evidence from a Business Plan Competition in Nigeria,"
CEPR Discussion Papers
12523, C.E.P.R. Discussion Papers.
- Mckenzie,David J. & Sansone,Dario & Mckenzie,David J. & Sansone,Dario, 2017. "Man vs. machine in predicting successful entrepreneurs : evidence from a business plan competition in Nigeria," Policy Research Working Paper Series 8271, The World Bank.
- Francesco Decarolis & Cristina Giorgiantonio, 2020. "Corruption red flags in public procurement: new evidence from Italian calls for tenders," Questioni di Economia e Finanza (Occasional Papers) 544, Bank of Italy, Economic Research and International Relations Area.
- Andini, Monica & Boldrini, Michela & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Paladini, Andrea, 2022.
"Machine learning in the service of policy targeting: The case of public credit guarantees,"
Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 434-475.
- Monica Andini & Michela Boldrini & Emanuele Ciani & Guido de Blasio & Alessio D'Ignazio & Andrea Paladini, 2019. "Machine learning in the service of policy targeting: the case of public credit guarantees," Temi di discussione (Economic working papers) 1206, Bank of Italy, Economic Research and International Relations Area.
- Emanuel Kohlscheen, 2022.
"Quantifying the Role of Interest Rates, the Dollar and Covid in Oil Prices,"
Papers
2208.14254, arXiv.org, revised Oct 2022.
- Emanuel Kohlscheen, 2022. "Quantifying the role of interest rates, the Dollar and Covid in oil prices," BIS Working Papers 1040, Bank for International Settlements.
- Nicolas Gavoille & Anna Zasova, 2021.
"What we pay in the shadows: Labor tax evasion, minimum wage hike and employment,"
SSE Riga/BICEPS Research Papers
6, Baltic International Centre for Economic Policy Studies (BICEPS);Stockholm School of Economics in Riga (SSE Riga).
- Nicolas Gavoille & Anna Zasova, 2021. "What we pay in the shadow: Labor tax evasion, minimum wage hike and employment," Working Papers CEB 21-017, ULB -- Universite Libre de Bruxelles.
- Max Vilgalys, 2023. "A Machine Learning Approach to Measuring Climate Adaptation," Papers 2302.01236, arXiv.org.
- Fabio Pammolli & Paolo Bonaretti & Massimo Riccaboni & Valentina Tortolini, 2019. "Quali Regole per la Spesa Farmaceutica? - Criticità, Impatti, Proposte," Working Papers CERM 01-2019, Competitività, Regole, Mercati (CERM).
More about this item
Keywords
policy prediction problems; tax behaviour; big data; machine learning;All these keywords.
JEL classification:
- H26 - Public Economics - - Taxation, Subsidies, and Revenue - - - Tax Evasion and Avoidance
- H32 - Public Economics - - Fiscal Policies and Behavior of Economic Agents - - - Firm
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2020-03-23 (Big Data)
- NEP-CMP-2020-03-23 (Computational Economics)
- NEP-PBE-2020-03-23 (Public Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mib:wpaper:436. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Matteo Pelagatti (email available below). General contact details of provider: https://edirc.repec.org/data/dpmibit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.