IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v19y1986i2p251-264.html
   My bibliography  Save this article

Bandwidth choice for differentiation

Author

Listed:
  • Rice, John A.

Abstract

We propose a class of procedures for choosing the bandwidth, or smoothing parameter, for linear nonparametric estimates of the rth derivative of a smooth function observed with error on a discrete set of points. These procedures are based on minimizing a nearly unbiased estimate of the integrated mean square error. Theoretical justification is provided in the special case of a tapered Fourier series estimate.

Suggested Citation

  • Rice, John A., 1986. "Bandwidth choice for differentiation," Journal of Multivariate Analysis, Elsevier, vol. 19(2), pages 251-264, August.
  • Handle: RePEc:eee:jmvana:v:19:y:1986:i:2:p:251-264
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(86)90030-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Cong & Wang, Yanfei, 2016. "Gradient-based bandwidth selection for estimating average derivatives," Economics Letters, Elsevier, vol. 140(C), pages 19-22.
    2. Salim Bouzebda & Mohamed Chaouch & Sultana Didi Biha, 2022. "Asymptotics for function derivatives estimators based on stationary and ergodic discrete time processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 737-771, August.
    3. Xie, Qichang & Sun, Qiankun, 2019. "Computation and application of robust data-driven bandwidth selection for gradient function estimation," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 274-293.
    4. Juei-Chao Chen, 1994. "Testing for no effect in nonparametric regression via spline smoothing techniques," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(2), pages 251-265, June.
    5. Henderson, Daniel J. & Li, Qi & Parmeter, Christopher F. & Yao, Shuang, 2015. "Gradient-based smoothing parameter selection for nonparametric regression estimation," Journal of Econometrics, Elsevier, vol. 184(2), pages 233-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:19:y:1986:i:2:p:251-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.