Disorder detection problems with applications in finance
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Gapeev, P.V. & Peskir, G., 2006. "The Wiener disorder problem with finite horizon," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1770-1791, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:hum:wpaper:sfb649dp2006-057 is not listed on IDEAS
- Buonaguidi, B., 2022. "The disorder problem for diffusion processes with the ϵ-linear and expected total miss criteria," Statistics & Probability Letters, Elsevier, vol. 189(C).
- Shiryaev Albert & Novikov Alexander A., 2009. "On a stochastic version of the trading rule “Buy and Hold”," Statistics & Risk Modeling, De Gruyter, vol. 26(4), pages 289-302, July.
- Antonio Di Crescenzo & Shelemyahu Zacks, 2015. "Probability Law and Flow Function of Brownian Motion Driven by a Generalized Telegraph Process," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 761-780, September.
- Pavel V. Gapeev & Monique Jeanblanc, 2019. "Defaultable Claims In Switching Models With Partial Information," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-18, June.
- Savas Dayanik, 2010. "Wiener Disorder Problem with Observations at Fixed Discrete Time Epochs," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 756-785, November.
- Pavel V. Gapeev & Monique Jeanblanc, 2020. "Credit Default Swaps In Two-Dimensional Models With Various Informations Flows," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(02), pages 1-28, March.
- Asaf Cohen, 2015. "Parameter Estimation: The Proper Way to Use Bayesian Posterior Processes with Brownian Noise," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 361-389, February.
- Savas Dayanik & Semih O. Sezer, 2016. "Sequential Sensor Installation for Wiener Disorder Detection," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 827-850, August.
- Christensen, Sören & Irle, Albrecht, 2020. "The monotone case approach for the solution of certain multidimensional optimal stopping problems," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1972-1993.
- Gapeev, Pavel V. & Jeanblanc, Monique, 2021. "First-to-default and second-to-default options in models with various information flows," LSE Research Online Documents on Economics 110750, London School of Economics and Political Science, LSE Library.
- Thomas Kruse & Philipp Strack, 2019.
"An Inverse Optimal Stopping Problem for Diffusion Processes,"
Mathematics of Operations Research, INFORMS, vol. 44(2), pages 423-439, May.
- Thomas Kruse & Philipp Strack, 2014. "An inverse optimal stopping problem for diffusion processes," Papers 1406.0209, arXiv.org, revised Aug 2017.
- Pavel V. Gapeev, 2020. "On the problems of sequential statistical inference for Wiener processes with delayed observations," Statistical Papers, Springer, vol. 61(4), pages 1529-1544, August.
- Ameur, Hachmi Ben & Han, Xuyuan & Liu, Zhenya & Peillex, Jonathan, 2022. "When did global warming start? A new baseline for carbon budgeting," Economic Modelling, Elsevier, vol. 116(C).
- Zhenya Liu & Yuhao Mu, 2022. "Optimal Stopping Methods for Investment Decisions: A Literature Review," IJFS, MDPI, vol. 10(4), pages 1-23, October.
- Belomestny, Denis & Gapeev, Pavel V., 2006. "An iteration procedure for solving integral equations related to optimal stopping problems," SFB 649 Discussion Papers 2006-043, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Gapeev, Pavel V., 2022. "Discounted optimal stopping problems in continuous hidden Markov models," LSE Research Online Documents on Economics 110493, London School of Economics and Political Science, LSE Library.
- repec:hum:wpaper:sfb649dp2006-043 is not listed on IDEAS
- repec:hum:wpaper:sfb649dp2006-068 is not listed on IDEAS
- Tiziano De Angelis & Jhanvi Garg & Quan Zhou, 2022. "A quickest detection problem with false negatives," Papers 2210.01844, arXiv.org.
- Gapeev, Pavel V., 2006. "Discounted optimal stopping for maxima in diffusion models with finite horizon," SFB 649 Discussion Papers 2006-057, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Bruno Buonaguidi, 2023. "Finite Horizon Sequential Detection with Exponential Penalty for the Delay," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 224-238, July.
- Gapeev, Pavel V., 2006. "Integral options in models with jumps," SFB 649 Discussion Papers 2006-068, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:man:sespap:1229. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marianne Sensier (email available below). General contact details of provider: https://edirc.repec.org/data/semanuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.