IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v189y2022ics0167715222001092.html
   My bibliography  Save this article

The disorder problem for diffusion processes with the ϵ-linear and expected total miss criteria

Author

Listed:
  • Buonaguidi, B.

Abstract

We study the disorder problem for a time-homogeneous diffusion process. The aim is to determine an efficient detection strategy of the disorder time θ, at which the process changes its drift. We focus on the ϵ-linear and the expected total miss criteria, where, unlike the well known linear penalty criterion, the expected penalty for an early/wrong detection of θ is expressed as the frequency of false alarms launched at least ϵ units of time before θ and as the expected advance in the detection of θ, respectively. We show that the original optimal stopping problems can be reduced to a unifying optimal stopping problem; then, we derive the associated free-boundary problem and we provide sufficient conditions for the existence and uniqueness of its solution.

Suggested Citation

  • Buonaguidi, B., 2022. "The disorder problem for diffusion processes with the ϵ-linear and expected total miss criteria," Statistics & Probability Letters, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:stapro:v:189:y:2022:i:c:s0167715222001092
    DOI: 10.1016/j.spl.2022.109548
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222001092
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gapeev, Pavel V., 2020. "On the problems of sequential statistical inference for Wiener processes with delayed observations," LSE Research Online Documents on Economics 104072, London School of Economics and Political Science, LSE Library.
    2. Pavel V. Gapeev, 2020. "On the problems of sequential statistical inference for Wiener processes with delayed observations," Statistical Papers, Springer, vol. 61(4), pages 1529-1544, August.
    3. Bayraktar, Erhan & Dayanik, Savas & Karatzas, Ioannis, 2005. "The standard Poisson disorder problem revisited," Stochastic Processes and their Applications, Elsevier, vol. 115(9), pages 1437-1450, September.
    4. Savas Dayanik & Semih Onur Sezer, 2006. "Compound Poisson Disorder Problem," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 649-672, November.
    5. Manuel Klein, 2009. "Comment on “Investment Timing Under Incomplete Information”," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 249-254, February.
    6. Erhan Bayraktar & Savas Dayanik, 2006. "Poisson Disorder Problem with Exponential Penalty for Delay," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 217-233, May.
    7. Gapeev, P.V. & Peskir, G., 2006. "The Wiener disorder problem with finite horizon," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1770-1791, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Buonaguidi, 2023. "Finite Horizon Sequential Detection with Exponential Penalty for the Delay," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 224-238, July.
    2. Erhan Bayraktar & H. Poor, 2008. "Optimal time to change premiums," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(1), pages 125-158, August.
    3. Savas Dayanik, 2010. "Wiener Disorder Problem with Observations at Fixed Discrete Time Epochs," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 756-785, November.
    4. Krawiec, Michał & Palmowski, Zbigniew & Płociniczak, Łukasz, 2018. "Quickest drift change detection in Lévy-type force of mortality model," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 432-450.
    5. Georgy Sofronov & Martin Wendler & Volkmar Liebscher, 2020. "Editorial for the special issue: Change point detection," Statistical Papers, Springer, vol. 61(4), pages 1347-1349, August.
    6. Savas Dayanik & Semih O Sezer, 2023. "Model Misspecification in Discrete Time Bayesian Online Change Detection," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-27, March.
    7. Pavel V. Gapeev, 2016. "Bayesian Switching Multiple Disorder Problems," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1108-1124, August.
    8. Savas Dayanik & Semih Onur Sezer, 2006. "Compound Poisson Disorder Problem," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 649-672, November.
    9. Christensen, Sören & Irle, Albrecht, 2020. "The monotone case approach for the solution of certain multidimensional optimal stopping problems," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1972-1993.
    10. Pavel V. Gapeev, 2020. "On the problems of sequential statistical inference for Wiener processes with delayed observations," Statistical Papers, Springer, vol. 61(4), pages 1529-1544, August.
    11. Gapeev, Pavel V., 2020. "On the problems of sequential statistical inference for Wiener processes with delayed observations," LSE Research Online Documents on Economics 104072, London School of Economics and Political Science, LSE Library.
    12. Hu, Fan & Wu, Yaoyao & Zhou, Lei, 2022. "Irreversible investment and capacity choice with Bayesian learning," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    13. Asaf Cohen & Eilon Solan, 2013. "Bandit Problems with Lévy Processes," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 92-107, February.
    14. Erik Ekström & Martin Vannestål, 2019. "American Options And Incomplete Information," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-14, September.
    15. Shiryaev Albert & Novikov Alexander A., 2009. "On a stochastic version of the trading rule “Buy and Hold”," Statistics & Risk Modeling, De Gruyter, vol. 26(4), pages 289-302, July.
    16. Pavel V. Gapeev & Hessah Al Motairi, 2018. "Perpetual American Defaultable Options in Models with Random Dividends and Partial Information," Risks, MDPI, vol. 6(4), pages 1-15, November.
    17. Ali Devin Sezer & Çağrı Haksöz, 2012. "Optimal Decision Rules for Product Recalls," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 399-418, August.
    18. Thomas Kruse & Philipp Strack, 2019. "An Inverse Optimal Stopping Problem for Diffusion Processes," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 423-439, May.
    19. Ameur, Hachmi Ben & Han, Xuyuan & Liu, Zhenya & Peillex, Jonathan, 2022. "When did global warming start? A new baseline for carbon budgeting," Economic Modelling, Elsevier, vol. 116(C).
    20. Zhenya Liu & Yuhao Mu, 2022. "Optimal Stopping Methods for Investment Decisions: A Literature Review," IJFS, MDPI, vol. 10(4), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:189:y:2022:i:c:s0167715222001092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.