IDEAS home Printed from https://ideas.repec.org/p/mad/wpaper/2010-052.html
   My bibliography  Save this paper

Measuring Accuracy of Projections of Central Taxes by the Finance Commission

Author

Listed:
  • D K Srivastava

    (Madras School of Economics)

  • C Bhujanga Rao

    (Madras School of Economics)

Abstract

This paper looks at the quality of forecasts/assessments made by some of the recent Finance Commissions for the shareable central taxes and own tax revenues of selected states. The Commissions covered under this analysis are Ninth to Twelfth Finance Commissions. It is observed that while direct taxes are underestimated in general, revenues from indirect taxes partially Union excise duties and custom duties have been over estimated. In respect of states, four selected states viz., Andhra Pradesh, Gujarat, Orissa and Assam are examined. While there is similarity between the approaches of Ninth, Tenth and Twelfth Finance Commissions in regard to middle and high income states, the Eleventh Finance Commission required that they raise tax revenues higher than what they were able to achieve.

Suggested Citation

  • D K Srivastava & C Bhujanga Rao, 2010. "Measuring Accuracy of Projections of Central Taxes by the Finance Commission," Working Papers 2010-052, Madras School of Economics,Chennai,India.
  • Handle: RePEc:mad:wpaper:2010-052
    as

    Download full text from publisher

    File URL: http://www.mse.ac.in/wp-content/uploads/2016/09/working-paper-52.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacob A. Mincer, 1969. "Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance," NBER Books, National Bureau of Economic Research, Inc, number minc69-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    2. Pericoli, Marcello & Taboga, Marco, 2012. "Bond risk premia, macroeconomic fundamentals and the exchange rate," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 42-65.
    3. Bedri Kamil Onur Taş, 2016. "Does the Federal Reserve have Private Information about its Future Actions?," Economica, London School of Economics and Political Science, vol. 83(331), pages 498-517, July.
    4. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    5. Bespalova, Olga, 2018. "Forecast Evaluation in Macroeconomics and International Finance. Ph.D. thesis, George Washington University, Washington, DC, USA," MPRA Paper 117706, University Library of Munich, Germany.
    6. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    7. Patrick Rizzetto, 2018. "GDP by Industry in Real Time: Are Revisions Well Behaved?," Staff Analytical Notes 2018-40, Bank of Canada.
    8. repec:zbw:bofrdp:037 is not listed on IDEAS
    9. Thomas Lustenberger & Enzo Rossi, 2022. "The Social Value of Information: A Test of a Beauty and Nonbeauty Contest," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(7), pages 2125-2148, October.
    10. Angelini, Giovanni & De Angelis, Luca & Singleton, Carl, 2022. "Informational efficiency and behaviour within in-play prediction markets," International Journal of Forecasting, Elsevier, vol. 38(1), pages 282-299.
    11. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    12. Fabian Hollstein & Marcel Prokopczuk & Chardin Wese Simen, 2020. "The Conditional Capital Asset Pricing Model Revisited: Evidence from High-Frequency Betas," Management Science, INFORMS, vol. 66(6), pages 2474-2494, June.
    13. Monique Reid & Pierre Siklos, 2023. "Rationality and biases insights from disaggregated firm level inflation expectations data," Working Papers 11050, South African Reserve Bank.
    14. Dovern, Jonas & Jannsen, Nils, 2017. "Systematic errors in growth expectations over the business cycle," International Journal of Forecasting, Elsevier, vol. 33(4), pages 760-769.
    15. James M. O'Brien & Pawel J. Szerszen, 2014. "An Evaluation of Bank VaR Measures for Market Risk During and Before the Financial Crisis," Finance and Economics Discussion Series 2014-21, Board of Governors of the Federal Reserve System (U.S.).
    16. Janis Becker & Christian Leschinski, 2021. "Estimating the volatility of asset pricing factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 269-278, March.
    17. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    18. Klaus-Peter Hellwig, 2018. "Overfitting in Judgment-based Economic Forecasts: The Case of IMF Growth Projections," IMF Working Papers 2018/260, International Monetary Fund.
    19. Liu, Xiaochun & Luger, Richard, 2015. "Unfolded GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 186-217.
    20. Silvia Muzzioli & Luca Gambarelli & Bernard De Baets, 2018. "Indices for Financial Market Volatility Obtained Through Fuzzy Regression," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1659-1691, November.
    21. Daniel Mantilla-García & Vijay Vaidyanathan, 2017. "Predicting stock returns in the presence of uncertain structural changes and sample noise," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 357-391, August.

    More about this item

    Keywords

    Central Taxes; Own Tax Revenues; Finance Commission;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue
    • H5 - Public Economics - - National Government Expenditures and Related Policies
    • H7 - Public Economics - - State and Local Government; Intergovernmental Relations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mad:wpaper:2010-052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geetha G (email available below). General contact details of provider: https://edirc.repec.org/data/mseacin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.