IDEAS home Printed from https://ideas.repec.org/p/lat/lateco/1998-14.html
   My bibliography  Save this paper

La demande touristique européenne en Tunisie

Author

Listed:
  • OUERFELLI, Chokri

    (LATEC - CNRS UMR 5601 - Université de Bourgogne)

Abstract

L'objectif de ce travail consiste à faire ressortir, à côté de la saisonnalité (en partie due au climat), certains indicateurs économiques susceptibles d'expliquer la demande adressée à l'industrie touristique tunisienne: le prix, le revenu et l'offre. Ces différents indicateurs sont inclus dans un modèle structurel visant à expliquer la demande touristique. Des méthodologies de modélisation, permettant d'appréhender la variabilité des séries touristiques, ont été proposées. Nous avons retenu le Modèle Structurel de Base et l'approche de Harvey (1990) comme stratégie d'estimation et de prévision. Nous avons retenu aussi le Modèle de Fonction de Transfert et la Spécification Autorégressive à Retards Echelonnés. Les équations finales à estimer de ces spécifications, basées sur des tests de vérification, ont montré leur aptitude à représenter pertinemment la demande touristique. La comparaison de ces différents modèles a contribué amplement à affiner les résultats empiriques notamment en ce qui concerne l'estimation des élasticités de la demande, et à améliorer la précision des prévisions qui en découlent. / The purpose of this paper is to delimit, with seasonality (in part caused by weather), certain economic indicators in order to explain european demand for tunisian tourist services: price, income and supply. These relevant indicators were included in a structural model to explain tourist demand. Modelling methodologies, allow to apprehend tourist time series variability, were proposed. We have suggest the Basic Structural Model and Harvey (1990)'s estimation and prediction strategy. We have also suggest Transfer Function Model and Autoregressive distributed Lag Distribution. Final equations, based on diagnostic checking, were suitably fitted tourist demand. The comparison of these different models widely contributed to refine empirical results particularly the estimation of demand elasticity, and to improve prediction accuracy.

Suggested Citation

  • OUERFELLI, Chokri, 1998. "La demande touristique européenne en Tunisie," LATEC - Document de travail - Economie (1991-2003) 1998-14, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
  • Handle: RePEc:lat:lateco:1998-14
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Martin, Christine A. & Witt, Stephen F., 1989. "Forecasting tourism demand: A comparison of the accuracy of several quantitative methods," International Journal of Forecasting, Elsevier, vol. 5(1), pages 7-19.
    2. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, January.
    3. Pehkonen, Jaakko, 1992. "Survey Expectations and Stochastic Trends in Modelling the Employment-Output Equation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(4), pages 579-589, November.
    4. Hans Franses, Philip, 1992. "Testing for seasonality," Economics Letters, Elsevier, vol. 38(3), pages 259-262, March.
    5. PICHERY, Marie-Claude & OUERFELLI, Chokri, 1998. "La non stationnarité dans les séries saisonnières : Application au tourisme tunisien," LATEC - Document de travail - Economie (1991-2003) 1998-09, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    6. Harvey, A. C., 1986. "The effects of seat belt legislation on British road casualities: A case study in structural modelling : A.C. Harvey and J. Durbing, Journal of the Royal Statistical Society, Series A 149 (1986) (in p," International Journal of Forecasting, Elsevier, vol. 2(4), pages 496-497.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonzalez, Pilar & Moral, Paz, 1995. "An analysis of the international tourism demand in Spain," International Journal of Forecasting, Elsevier, vol. 11(2), pages 233-251, June.
    2. Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
    3. Kulendran, N. & King, Maxwell L., 1997. "Forecasting international quarterly tourist flows using error-correction and time-series models," International Journal of Forecasting, Elsevier, vol. 13(3), pages 319-327, September.
    4. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    5. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    6. Prilly Oktoviany & Robert Knobloch & Ralf Korn, 2021. "A machine learning-based price state prediction model for agricultural commodities using external factors," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1063-1085, December.
    7. David Bolder & Shudan Liu, 2007. "Examining Simple Joint Macroeconomic and Term-Structure Models: A Practitioner's Perspective," Staff Working Papers 07-49, Bank of Canada.
    8. Yuo-Hsien Shiau & Su-Fen Yang & Rishan Adha & Syamsiyatul Muzayyanah, 2022. "Modeling Industrial Energy Demand in Relation to Subsector Manufacturing Output and Climate Change: Artificial Neural Network Insights," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    9. Clements, Kenneth W. & Fry, Renée, 2008. "Commodity currencies and currency commodities," Resources Policy, Elsevier, vol. 33(2), pages 55-73, June.
    10. Faust, Jon & Gupta, Abhishek, 2010. "Posterior Predictive Analysis for Evaluating DSGE Models," MPRA Paper 26721, University Library of Munich, Germany.
    11. Rutger-Jan Lange & Coen N. Teulings, 2021. "The option value of vacant land: Don't build when demand for housing is booming," Tinbergen Institute Discussion Papers 21-022/IV, Tinbergen Institute.
    12. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    13. Zirogiannis, Nikolaos & Tripodis, Yorghos, 2013. "A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm," Working Paper Series 142752, University of Massachusetts, Amherst, Department of Resource Economics.
    14. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    15. Gardner, Jesse & Sloan, Richard G. & Yoon, Joon Sang, 2024. "Distinguishing between recurring and nonrecurring components of earnings using unobserved components modeling," Journal of Accounting and Economics, Elsevier, vol. 78(1).
    16. Moshe Buchinsky & Phillip Leslie, 2010. "Educational Attainment and the Changing U.S. Wage Structure: Dynamic Implications on Young Individuals' Choices," Journal of Labor Economics, University of Chicago Press, vol. 28(3), pages 541-594, July.
    17. S. Boragan Aruoba & Francis X. Diebold, 2010. "Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions," American Economic Review, American Economic Association, vol. 100(2), pages 20-24, May.
    18. Guizzardi, Andrea & Mazzocchi, Mario, 2010. "Tourism demand for Italy and the business cycle," Tourism Management, Elsevier, vol. 31(3), pages 367-377.
    19. Ippei Fujiwara & Koji Takahashi, 2012. "Asian Financial Linkage: Macro‐Finance Dissonance," Pacific Economic Review, Wiley Blackwell, vol. 17(1), pages 136-159, February.
    20. Hongsheng Bi & Rubao Ji & Hui Liu & Young-Heon Jo & Jonathan A Hare, 2014. "Decadal Changes in Zooplankton of the Northeast U.S. Continental Shelf," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-12, January.

    More about this item

    Keywords

    Demande touristique induite; Saisonnalité; Modèle structurel de base; Fonction de transfert; Spécification autorégressive à retards échelonnés; élasticités; Supply induced demand; Seasonality; Basic structural model; Transfer function model; Autoregressive distributitive lags models; elasticity;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lat:lateco:1998-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/latecfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.