IDEAS home Printed from https://ideas.repec.org/p/kyo/wpaper/981.html
   My bibliography  Save this paper

Optimal Initial Capital Induced by the Optimized Certainty Equivalent

Author

Listed:
  • Takao Asano

    (Okayama University)

  • Takuji Arai

    (Keio University)

  • Katsumasa Nishide

    (Hitotsubashi University)

Abstract

This paper proposes the notion of optimal initial capital (OIC) induced by the optimized certainty equivalent (OCE) discussed in Ben-Tal and Teboulle (1986) and Ben-Tal and Teboulle (2007), and investigates the properties of the OIC with various types of utility functions. By providing its several properties with different utility functions or other assumptions, we successfully present the OIC as a monetary utility function (negative value of risk measure) for future payoffs with the decisionmaker's concrete criteria in the background.

Suggested Citation

  • Takao Asano & Takuji Arai & Katsumasa Nishide, 2017. "Optimal Initial Capital Induced by the Optimized Certainty Equivalent," KIER Working Papers 981, Kyoto University, Institute of Economic Research.
  • Handle: RePEc:kyo:wpaper:981
    as

    Download full text from publisher

    File URL: http://www.kier.kyoto-u.ac.jp/DP/DP981.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    2. Kimball, Miles S, 1990. "Precautionary Saving in the Small and in the Large," Econometrica, Econometric Society, vol. 58(1), pages 53-73, January.
    3. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    4. Liebrich, Felix-Benedikt & Svindland, Gregor, 2017. "Model spaces for risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 150-165.
    5. Boonen, Tim J., 2015. "Competitive Equilibria With Distortion Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 45(3), pages 703-728, September.
    6. Caballe, Jordi & Pomansky, Alexey, 1996. "Mixed Risk Aversion," Journal of Economic Theory, Elsevier, vol. 71(2), pages 485-513, November.
    7. Rieger, Marc Oliver, 2017. "Characterization of acceptance sets for co-monotone risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 147-152.
    8. Roger J. A. Laeven & Mitja Stadje, 2013. "Entropy Coherent and Entropy Convex Measures of Risk," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 265-293, May.
    9. Nadine Gatzert & Hannah Wesker, 2012. "A Comparative Assessment of Basel II/III and Solvency II," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 37(3), pages 539-570, July.
    10. Pratt, John W & Zeckhauser, Richard J, 1987. "Proper Risk Aversion," Econometrica, Econometric Society, vol. 55(1), pages 143-154, January.
    11. Patrick L. Brockett & Linda L. Golden, 1987. "A Class of Utility Functions Containing all the Common Utility Functions," Management Science, INFORMS, vol. 33(8), pages 955-964, August.
    12. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    13. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    14. Chi, Yichun & Tan, Ken Seng, 2013. "Optimal reinsurance with general premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 180-189.
    15. Hara, Chiaki, 2008. "Complete monotonicity of the representative consumer's discount factor," Journal of Mathematical Economics, Elsevier, vol. 44(12), pages 1321-1331, December.
    16. LeRoy,Stephen F. & Werner,Jan, 2014. "Principles of Financial Economics," Cambridge Books, Cambridge University Press, number 9781107024120, October.
    17. Weber, Stefan, 2018. "Solvency II, or how to sweep the downside risk under the carpet," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 191-200.
    18. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    19. Kimball, Miles S, 1993. "Standard Risk Aversion," Econometrica, Econometric Society, vol. 61(3), pages 589-611, May.
    20. Deprez, Olivier & Gerber, Hans U., 1985. "On convex principles of premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 4(3), pages 179-189, July.
    21. Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2011. "Optimality of general reinsurance contracts under CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 175-187, September.
    22. Aharon Ben-Tal & Marc Teboulle, 1986. "Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming," Management Science, INFORMS, vol. 32(11), pages 1445-1466, November.
    23. Felix-Benedikt Liebrich & Gregor Svindland, 2017. "Model Spaces for Risk Measures," Papers 1703.01137, arXiv.org, revised Nov 2017.
    24. Louis Raymond Eeckhoudt & Elisa Pagani & Emanuela Rosazza Gianin, 2016. "Prudence, risk measures and the Optimized Certainty Equivalent: a note," Working Papers 07/2016, University of Verona, Department of Economics.
    25. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    26. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel & Heras, Antonio, 2015. "Optimal reinsurance under risk and uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 61-74.
    27. Filipovic, Damir & Vogelpoth, Nicolas, 2008. "A note on the Swiss Solvency Test risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 897-902, June.
    28. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    29. Alexander Braun & Hato Schmeiser & Caroline Siegel, 2014. "The Impact of Private Equity on a Life Insurer's Capital Charges Under Solvency II and the Swiss Solvency Test," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(1), pages 113-158, March.
    30. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    31. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2009. "Optimal reinsurance with general risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 374-384, June.
    32. Kong, Dezhou & Liu, Lishan & Wu, Yonghong, 2018. "Optimal reinsurance under risk and uncertainty on Orlicz hearts," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 108-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haktanır, Elif & Kahraman, Cengiz, 2023. "Intuitionistic fuzzy risk adjusted discount rate and certainty equivalent methods for risky projects," International Journal of Production Economics, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    2. Knispel, Thomas & Laeven, Roger J.A. & Svindland, Gregor, 2016. "Robust optimal risk sharing and risk premia in expanding pools," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 182-195.
    3. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    4. Louis Eeckhoudt & Harris Schlesinger, 2006. "Putting Risk in Its Proper Place," American Economic Review, American Economic Association, vol. 96(1), pages 280-289, March.
    5. Daniel Bartl & Samuel Drapeau & Ludovic Tangpi, 2017. "Computational aspects of robust optimized certainty equivalents and option pricing," Papers 1706.10186, arXiv.org, revised Mar 2019.
    6. Daniel Lacker, 2018. "Liquidity, Risk Measures, and Concentration of Measure," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 813-837, August.
    7. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    8. Krokhmal, Pavlo A. & Soberanis, Policarpio, 2010. "Risk optimization with p-order conic constraints: A linear programming approach," European Journal of Operational Research, Elsevier, vol. 201(3), pages 653-671, March.
    9. Kong, Dezhou & Liu, Lishan & Wu, Yonghong, 2018. "Optimal reinsurance under risk and uncertainty on Orlicz hearts," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 108-116.
    10. Yannick Armenti & Stéphane Crépey & Samuel Drapeau & Antonis Papapantoleon, 2018. "Multivariate Shortfall Risk Allocation and Systemic Risk," Working Papers hal-01764398, HAL.
    11. Rieger, Marc Oliver, 2017. "Characterization of acceptance sets for co-monotone risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 147-152.
    12. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    13. Yannick Armenti & Stephane Crepey & Samuel Drapeau & Antonis Papapantoleon, 2015. "Multivariate Shortfall Risk Allocation and Systemic Risk," Papers 1507.05351, arXiv.org, revised Mar 2017.
    14. Martin Herdegen & Nazem Khan, 2022. "$\rho$-arbitrage and $\rho$-consistent pricing for star-shaped risk measures," Papers 2202.07610, arXiv.org, revised May 2024.
    15. Mucahit Aygun & Fabio Bellini & Roger J. A. Laeven, 2023. "Elicitability of Return Risk Measures," Papers 2302.13070, arXiv.org, revised Mar 2023.
    16. Menegatti, Mario, 2014. "New results on the relationship among risk aversion, prudence and temperance," European Journal of Operational Research, Elsevier, vol. 232(3), pages 613-617.
    17. Laeven, R.J.A. & Stadje, M.A., 2011. "Entropy Coherent and Entropy Convex Measures of Risk," Discussion Paper 2011-031, Tilburg University, Center for Economic Research.
    18. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2014. "A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time," Papers 1409.7028, arXiv.org, revised Sep 2017.
    19. Zhiping Chen & Qianhui Hu, 2018. "On Coherent Risk Measures Induced by Convex Risk Measures," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 673-698, June.
    20. Radu Boţ & Alina-Ramona Frătean, 2011. "Looking for appropriate qualification conditions for subdifferential formulae and dual representations for convex risk measures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(2), pages 191-215, October.

    More about this item

    Keywords

    optimal initial capital; optimized certainty equivalence; monetary utility function; prudence premium.;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • D46 - Microeconomics - - Market Structure, Pricing, and Design - - - Value Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kyo:wpaper:981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Makoto Watanabe (email available below). General contact details of provider: https://edirc.repec.org/data/iekyojp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.