IDEAS home Printed from https://ideas.repec.org/p/kue/dpaper/e-11-007.html
   My bibliography  Save this paper

Directed technical change, unilateral actions, and climate change

Author

Listed:
  • Hiroaki Sakamoto

Abstract

In this paper, I investigate the implications of policy-induced technological change based on a multi-region variant of the directed technical change model developed by Acemoglu et al. (2012). On top of the pollution externality accompanied by carbon dioxide emission, different regions are connected through a global market where energy-related machine producing firms monopolistically compete with each other. One of the main findings of the analysis is that unilaterally introduced climate policies in developed regions might have only a slight short-term impact at a global level, but later will turn out to be a basis for low-carbon development in developing regions as well as developed regions. The simulation results indicate that an extension of the Kyoto protocol, if appropriately designed, can trigger a long-term shift in energy use at a global level even without active involvement of the United States. Moreover, if the United States decides to join the treaty and a fairly moderate abatement target is agreed upon among the member states, the similar level of long-term environmental consequence as in the universal climate regime can be replicated without explicit participation of developing regions.

Suggested Citation

  • Hiroaki Sakamoto, 2012. "Directed technical change, unilateral actions, and climate change," Discussion papers e-11-007, Graduate School of Economics Project Center, Kyoto University.
  • Handle: RePEc:kue:dpaper:e-11-007
    as

    Download full text from publisher

    File URL: http://www.econ.kyoto-u.ac.jp/projectcenter/Paper/e-11-007.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Popp David, 2005. "Uncertain R&D and the Porter Hypothesis," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 4(1), pages 1-14, June.
    3. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    4. Eli Berman & Linda T. M. Bui, 2001. "Environmental Regulation And Productivity: Evidence From Oil Refineries," The Review of Economics and Statistics, MIT Press, vol. 83(3), pages 498-510, August.
    5. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    6. Popp, David, 2006. "ENTICE-BR: The effects of backstop technology R&D on climate policy models," Energy Economics, Elsevier, vol. 28(2), pages 188-222, March.
    7. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2011. "Climate change mitigation options and directed technical change: A decentralized equilibrium analysis," Resource and Energy Economics, Elsevier, vol. 33(4), pages 938-962.
    8. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    9. Jamie Sanderson & Sardar M. N. Islam, 2007. "Climate Change and Economic Development," Palgrave Macmillan Books, Palgrave Macmillan, number 978-0-230-59012-0.
    10. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    2. Lazkano, Itziar & Nøstbakken, Linda & Pelli, Martino, 2017. "From fossil fuels to renewables: The role of electricity storage," European Economic Review, Elsevier, vol. 99(C), pages 113-129.
    3. Shiell, Leslie & Lyssenko, Nikita, 2014. "Climate policy and induced R&D: How great is the effect?," Energy Economics, Elsevier, vol. 46(C), pages 279-294.
    4. Tunç Durmaz & Fred Schroyen, 2020. "Evaluating Carbon Capture And Storage In A Climate Model With Endogenous Technical Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-47, February.
    5. Antoine Dechezleprêtre & David Popp, 2015. "Fiscal and Regulatory Instruments for Clean Technology Development in the European Union," CESifo Working Paper Series 5361, CESifo.
    6. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    7. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    8. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    9. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    10. repec:spo:wpmain:info:hdl:2441/14g286e42n8bl9is6h16b18kes is not listed on IDEAS
    11. Antung Anthony Liu & Hiroaki Yamagami, 2018. "Environmental Policy in the Presence of Induced Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 279-299, September.
    12. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    13. Sen, Suphi, 2015. "Corporate governance, environmental regulations, and technological change," European Economic Review, Elsevier, vol. 80(C), pages 36-61.
    14. Lucas Bretschger & Matthias Leuthard & Alena Miftakhova, 2024. "Boosting Sluggish Climate Policy: Endogenous Substitution, Learning, and Energy Efficiency Improvements," CER-ETH Economics working paper series 24/391, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    15. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    16. Wei Jin & ZhongXiang Zhang, 2017. "The tragedy of product homogeneity and knowledge non-spillovers: explaining the slow pace of energy technological progress," Annals of Operations Research, Springer, vol. 255(1), pages 639-661, August.
    17. Lamperti, Francesco & Napoletano, Mauro & Roventini, Andrea, 2020. "Green Transitions And The Prevention Of Environmental Disasters: Market-Based Vs. Command-And-Control Policies," Macroeconomic Dynamics, Cambridge University Press, vol. 24(7), pages 1861-1880, October.
    18. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    19. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    20. Chen Feng & Beibei Shi & Rong Kang, 2017. "Does Environmental Policy Reduce Enterprise Innovation?—Evidence from China," Sustainability, MDPI, vol. 9(6), pages 1-24, May.
    21. Wei Jin, 2012. "Can China Harness Globalization to Reap Carbon Savings? Modeling International Technology Diffusion in a Multi-region Framework," CAMA Working Papers 2012-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.

    More about this item

    Keywords

    Climate change; directed technical change; unilateral policy; innovation; Kyoto protocol;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kue:dpaper:e-11-007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Graduate School of Economics Project Center (email available below). General contact details of provider: https://edirc.repec.org/data/fekyojp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.