IDEAS home Printed from https://ideas.repec.org/p/iwt/bosers/h039316.html
   My bibliography  Save this paper

Management options and policy guidelines for use of poor quality groundwater in agriculture

Author

Listed:
  • Sharma, D. R.
  • Minhas, P. S.

Abstract

No abstract is available for this item.

Suggested Citation

  • Sharma, D. R. & Minhas, P. S., 2006. "Management options and policy guidelines for use of poor quality groundwater in agriculture," IWMI Books, Reports H039316, International Water Management Institute.
  • Handle: RePEc:iwt:bosers:h039316
    as

    Download full text from publisher

    File URL: https://publications.iwmi.org/pdf/H039316.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minhas, P. S., 1996. "Saline water management for irrigation in India," Agricultural Water Management, Elsevier, vol. 30(1), pages 1-24, March.
    2. Bajwa, M. S. & Josan, A. S., 1989. "Prediction of sustained sodic irrigation effects on soil sodium saturation and crop yields," Agricultural Water Management, Elsevier, vol. 16(3), pages 217-228, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minhas, P.S. & Dubey, S.K. & Sharma, D.R., 2007. "Comparative affects of blending, intera/inter-seasonal cyclic uses of alkali and good quality waters on soil properties and yields of paddy and wheat," Agricultural Water Management, Elsevier, vol. 87(1), pages 83-90, January.
    2. Minhas, P.S. & Qadir, Manzoor & Yadav, R.K., 2019. "Groundwater irrigation induced soil sodification and response options," Agricultural Water Management, Elsevier, vol. 215(C), pages 74-85.
    3. Barmon, Basanta Kumar, 2016. "Impacts of the Alternate Wetting and Drying Irrigation System on Modern Varieties of Paddy Production in Bangladesh: A Case Study of Jessore District," Bangladesh Development Studies, Bangladesh Institute of Development Studies (BIDS), vol. 39(3-4), pages 77-104, sept-dec.
    4. Dang, A. & Bennett, J. McL. & Marchuk, A. & Marchuk, S. & Biggs, A.J.W. & Raine, S.R., 2018. "Validating laboratory assessment of threshold electrolyte concentration for fields irrigated with marginal quality saline-sodic water," Agricultural Water Management, Elsevier, vol. 205(C), pages 21-29.
    5. Singh, R.B. & Chauhan, C.P.S. & Minhas, P.S., 2009. "Water production functions of wheat (Triticum aestivum L.) irrigated with saline and alkali waters using double-line source sprinkler system," Agricultural Water Management, Elsevier, vol. 96(5), pages 736-744, May.
    6. Seidu, Razak & Drechsel, Pay, 2011. "Analyse cout-efficacite des interventions pour reduire les maladies diarrheiques chez les consommateurs de laitues irriguees avec des eaux usees au Ghana. In French," Book Chapters,, International Water Management Institute.
    7. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    8. M. L. Dotaniya & V. D. Meena & J. K. Saha & C. K. Dotaniya & Alaa El Din Mahmoud & B. L. Meena & M. D. Meena & R. C. Sanwal & Ram Swaroop Meena & R. K. Doutaniya & Praveen Solanki & Manju Lata & P. K., 2023. "Reuse of poor-quality water for sustainable crop production in the changing scenario of climate," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7345-7376, August.
    9. Zhang, Junpeng & Li, Kejiang & Gao, Yang & Feng, Di & Zheng, Chunlian & Cao, Caiyun & Sun, Jingsheng & Dang, Hongkai & Hamani, Abdoul Kader Mounkaila, 2022. "Evaluation of saline water irrigation on cotton growth and yield using the AquaCrop crop simulation model," Agricultural Water Management, Elsevier, vol. 261(C).
    10. Kaledhonkar, M.J. & Keshari, A.K. & Van Der Zee, S.E.A.T.M., 2006. "Relative sensitivity of ESP profile to spatial and temporal variability in cation exchange capacity and pore water velocity under simulated field conditions," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 58-68, May.
    11. Vinod Phogat & Tim Pitt & Paul Petrie & Jirka Šimůnek & Michael Cutting, 2023. "Optimization of Irrigation of Wine Grapes with Brackish Water for Managing Soil Salinization," Land, MDPI, vol. 12(10), pages 1-29, October.
    12. Villholth, Karen & Sharma, Bharat R., 2006. "Creating synergy between groundwater research and management in South and South East Asia," Conference Papers h039305, International Water Management Institute.
    13. Katerji, N. & van Hoorn, J.W. & Fares, C. & Hamdy, A. & Mastrorilli, M. & Oweis, T., 2005. "Salinity effect on grain quality of two durum wheat varieties differing in salt tolerance," Agricultural Water Management, Elsevier, vol. 75(2), pages 85-91, July.
    14. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    15. Sharma, Bharat R. & Minhas, P.S., 2005. "Strategies for managing saline/alkali waters for sustainable agricultural production in South Asia," Agricultural Water Management, Elsevier, vol. 78(1-2), pages 136-151, September.
    16. Ilan Stavi, 2020. "On-Site Use of Plant Litter and Yard Waste as Mulch in Gardening and Landscaping Systems," Sustainability, MDPI, vol. 12(18), pages 1-7, September.
    17. Qadir, M. & Boers, Th. M. & Schubert, S. & Ghafoor, A. & Murtaza, G., 2003. "Agricultural water management in water-starved countries: challenges and opportunities," Agricultural Water Management, Elsevier, vol. 62(3), pages 165-185, October.
    18. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    19. Domínguez, A. & Tarjuelo, J.M. & de Juan, J.A. & López-Mata, E. & Breidy, J. & Karam, F., 2011. "Deficit irrigation under water stress and salinity conditions: The MOPECO-Salt Model," Agricultural Water Management, Elsevier, vol. 98(9), pages 1451-1461, July.
    20. Katerji, N. & Mastrorilli, M. & Lahmar, F., 2011. "FAO-56 methodology for the stress coefficient evaluation under saline environment conditions: Validation on potato and broad bean crops," Agricultural Water Management, Elsevier, vol. 98(4), pages 588-596, February.

    More about this item

    Keywords

    Groundwater irrigation;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iwt:bosers:h039316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chandima Gunadasa (email available below). General contact details of provider: https://edirc.repec.org/data/iwmiclk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.