IDEAS home Printed from https://ideas.repec.org/p/isu/genres/12554.html
   My bibliography  Save this paper

The Allocation of Nutrient Load Reduction Across a Watershed: Assessing Delivery Coefficients As an Implementation Tool

Author

Listed:
  • Feng, Hongli
  • Jha, Manoj
  • Gassman, Philip W.

Abstract

Delivery coefficients have long been used in economic analysis of policies that seek to address environmental problems like water pollution (Montgomery, 1972). However, the derivation and validity of delivery coefficients have not been examined carefully by empirical analyses. In this study, we derived estimates of delivery coefficients and then evaluated them as a bridge between complex biophysical models and economic policies. Specifically, delivery coefficients were first derived for the effects of nitrogen application reduction based on the simulation results of a watershed based model, the Soil and Water Assessment Tool (SWAT). Nutrient load reduction responsibilities were then allocated to subwatersheds based on the delivery coefficients using four different allocation principles. We found that the allocations based on delivery coefficients achieved results that differed from the water quality goals by only a few percentage points in general. Moreover, our results indicated that potential cost savings, measured in percentages, outweighed the deviation from water quality goals.

Suggested Citation

  • Feng, Hongli & Jha, Manoj & Gassman, Philip W., 2006. "The Allocation of Nutrient Load Reduction Across a Watershed: Assessing Delivery Coefficients As an Implementation Tool," Staff General Research Papers Archive 12554, Iowa State University, Department of Economics.
  • Handle: RePEc:isu:genres:12554
    as

    Download full text from publisher

    File URL: http://www2.econ.iastate.edu/papers/p5355-2006-03-24.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bruce A. Babcock, 1992. "The Effects of Uncertainty on Optimal Nitrogen Applications," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 14(2), pages 271-280.
    2. Newell, Richard G & Stavins, Robert N, 2003. "Cost Heterogeneity and the Potential Savings from Market-Based Policies," Journal of Regulatory Economics, Springer, vol. 23(1), pages 43-59, January.
    3. Hung, Ming-Feng & Shaw, Daigee, 2005. "A trading-ratio system for trading water pollution discharge permits," Journal of Environmental Economics and Management, Elsevier, vol. 49(1), pages 83-102, January.
    4. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qianwen Yu & Zehao Sun & Junyuan Shen & Xia Xu & Xiangnan Chen, 2023. "Interactive Allocation of Water Pollutant Initial Emission Rights in a Basin under Total Amount Control: A Leader-Follower Hierarchical Decision Model," IJERPH, MDPI, vol. 20(2), pages 1-25, January.
    2. Konrad, Maria Theresia & Hansen, Line Block & Levin, Gregor & Blicher-Mathiesen, Gitte & Andersen, Hans Estrup & Martinsen, Louise & Hasler, Berit, 2022. "Targeted regulation of nitrogen loads: A national, cross-sectoral analysis," Ecological Economics, Elsevier, vol. 193(C).
    3. Valcu, Adriana & Rabotyagov, Sergey S. & Kling, Catherine L., 2013. "Flexible Practice-Based Approaches For Controlling Multiple Agricultural Nonpoint-Source Water Pollution," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150450, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Hongli & Jha, Manoj K. & Gassman, Philip W., 2006. "Allocating Nutrient Load Reduction across a Watershed: Implications of Different Principles," 2006 Annual meeting, July 23-26, Long Beach, CA 21131, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Yates, Andrew J. & Doyle, Martin W. & Rigby, J.R. & Schnier, Kurt E., 2013. "Market power, private information, and the optimal scale of pollution permit markets with application to North Carolina's Neuse River," Resource and Energy Economics, Elsevier, vol. 35(3), pages 256-276.
    3. Valcu, Adriana Mihaela, 2013. "Agricultural nonpoint source pollution and water quality trading: empirical analysis under imperfect cost information and measurement error," ISU General Staff Papers 201301010800004451, Iowa State University, Department of Economics.
    4. Karen Fisher-Vanden & Sheila Olmstead, 2013. "Moving Pollution Trading from Air to Water: Potential, Problems, and Prognosis," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 147-172, Winter.
    5. Chen Shi & Yujiao Xian & Zhixin Wang & Ke Wang, 2023. "Marginal abatement cost curve of carbon emissions in China: a functional data analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(2), pages 1-25, February.
    6. Burtraw, Dallas & Woerman, Matt & Paul, Anthony, 2012. "Retail electricity price savings from compliance flexibility in GHG standards for stationary sources," Energy Policy, Elsevier, vol. 42(C), pages 67-77.
    7. Stavins, Robert, 2001. "Lessons From the American Experiment With Market-Based Environmental Policies," RFF Working Paper Series dp-01-53, Resources for the Future.
    8. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    9. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    10. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    11. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    12. Coxhead, Ian A. & Demeke, Bayou, 2006. "Modeling Spatially Differentiated Environmental Policy in a Philippine Watershed: Tradeoffs between Environmental Protection and Poverty Reduction," 2006 Annual meeting, July 23-26, Long Beach, CA 21115, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Martin Zapf & Hermann Pengg & Christian Weindl, 2019. "How to Comply with the Paris Agreement Temperature Goal: Global Carbon Pricing According to Carbon Budgets," Energies, MDPI, vol. 12(15), pages 1-20, August.
    14. Stavins, Robert, 2004. "Environmental Economics," Working Paper Series rwp04-051, Harvard University, John F. Kennedy School of Government.
    15. Alan F. Hamlet & Nima Ehsani & Jennifer L. Tank & Zachariah Silver & Kyuhyun Byun & Ursula H. Mahl & Shannon L. Speir & Matt T. Trentman & Todd V. Royer, 2024. "Effects of climate and winter cover crops on nutrient loss in agricultural watersheds in the midwestern U.S," Climatic Change, Springer, vol. 177(1), pages 1-21, January.
    16. Eini, Mohammad Reza & Salmani, Haniyeh & Piniewski, Mikołaj, 2023. "Comparison of process-based and statistical approaches for simulation and projections of rainfed crop yields," Agricultural Water Management, Elsevier, vol. 277(C).
    17. Meyer-Aurich, Andreas & Karatay, Yusuf Nadi, 2019. "Effects of uncertainty and farmers' risk aversion on optimal N fertilizer supply in wheat production in Germany," Agricultural Systems, Elsevier, vol. 173(C), pages 130-139.
    18. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    19. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    20. Paulson, Nicholas D. & Babcock, Bruce A., 2010. "Readdressing the Fertilizer Problem," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 35(3), pages 1-17, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isu:genres:12554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Curtis Balmer (email available below). General contact details of provider: https://edirc.repec.org/data/deiasus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.