IDEAS home Printed from https://ideas.repec.org/p/ise/remwps/wp01932021.html
   My bibliography  Save this paper

Minimizing Ruin Probability Under Dependencies for Insurance Pricing

Author

Listed:
  • R.L. Gudmundarson
  • M. Guerra
  • A. B. de Moura

Abstract

In this work the ruin probability of the Lundberg risk process is used as a criterion for determining the optimal security loading of premia in the presence of price-sensitive demand for insurance. Both single and aggregated claim processes are considered and the independent and the dependent cases are analyzed. For the single-risk case, we show that the optimal loading does not depend on the initial reserve. In the multiple risk case we account for arbitrary dependency structures between different risks and for dependencies between the probabilities of a client acquiring policies for different risks. In this case, the optimal loadings depend on the initial reserve. In all cases the loadings minimizing the ruin probability do not coincide with the loadings maximizing the expected profit.

Suggested Citation

  • R.L. Gudmundarson & M. Guerra & A. B. de Moura, 2021. "Minimizing Ruin Probability Under Dependencies for Insurance Pricing," Working Papers REM 2021/0193, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
  • Handle: RePEc:ise:remwps:wp01932021
    as

    Download full text from publisher

    File URL: https://rem.rc.iseg.ulisboa.pt/wps/pdf/REM_WP_0193_2021.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    2. Avanzi, Benjamin & Cassar, Luke C. & Wong, Bernard, 2011. "Modelling Dependence in Insurance Claims Processes with Lévy Copulas," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 575-609, November.
    3. Kahane, Yehuda, 1979. "The Theory of Insurance Risk Premiums—A Re-Examination in the Light of Recent Developments in Capital Market Theory," ASTIN Bulletin, Cambridge University Press, vol. 10(2), pages 223-239, March.
    4. Jean-Philippe Boucher & Michel Denuit & Montserrat Guillén, 2007. "Risk Classification for Claim Counts," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 110-131.
    5. Rob Kaas & Marc Goovaerts & Jan Dhaene & Michel Denuit, 2008. "Modern Actuarial Risk Theory," Springer Books, Springer, edition 2, number 978-3-540-70998-5, February.
    6. J. L. van Velsen, 2012. "Parameter estimation of a Levy copula of a discretely observed bivariate compound Poisson process with an application to operational risk modelling," Papers 1212.0092, arXiv.org.
    7. Kliger, Doron & Levikson, Benny, 1998. "Pricing insurance contracts -- an economic viewpoint," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 243-249, July.
    8. Christian Kasumo & Juma Kasozi & Dmitry Kuznetsov, 2018. "On Minimizing the Ultimate Ruin Probability of an Insurer by Reinsurance," Journal of Applied Mathematics, Hindawi, vol. 2018, pages 1-11, February.
    9. Antonella Campana & Paola Ferretti, 2005. "Distortion Risk Measures and Discrete Risks," Game Theory and Information 0510013, University Library of Munich, Germany.
    10. Antonis Papapantoleon, 2008. "An introduction to L\'{e}vy processes with applications in finance," Papers 0804.0482, arXiv.org, revised Nov 2008.
    11. Yuqing Zhang & Neil Walton, 2019. "Adaptive Pricing in Insurance: Generalized Linear Models and Gaussian Process Regression Approaches," Papers 1907.05381, arXiv.org.
    12. Julien Trufin & Hansjoerg Albrecher & Michel M Denuit, 2011. "Properties of a Risk Measure Derived from Ruin Theory," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 36(2), pages 174-188, December.
    13. Bäuerle, Nicole & Blatter, Anja, 2011. "Optimal control and dependence modeling of insurance portfolios with Lévy dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 398-405, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ragnar Levy Gudmundarson & Manuel Guerra & Alexandra Bugalho de Moura, 2021. "Minimizing ruin probability under dependencies for insurance pricing," Papers 2108.10075, arXiv.org.
    2. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    3. Mohamed Amine Lkabous & Jean-François Renaud, 2018. "A VaR-Type Risk Measure Derived from Cumulative Parisian Ruin for the Classical Risk Model," Risks, MDPI, vol. 6(3), pages 1-11, August.
    4. Pablo Azcue & Nora Muler, 2013. "Minimizing the ruin probability allowing investments in two assets: a two-dimensional problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(2), pages 177-206, April.
    5. Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021. "Optimal control of investment, premium and deductible for a non-life insurance company," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
    6. Claire Mouminoux & Christophe Dutang & Stéphane Loisel & Hansjoerg Albrecher, 2022. "On a Markovian Game Model for Competitive Insurance Pricing," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1061-1091, June.
    7. Guan, Guohui & Liang, Zongxia, 2014. "Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 105-115.
    8. Yan Tong & Tongling Lv & Yu Yan, 2023. "Optimal Investment and Reinsurance Policies in a Continuous-Time Model," Mathematics, MDPI, vol. 11(24), pages 1-20, December.
    9. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    10. Nicole Bauerle & Gregor Leimcke, 2021. "Bayesian optimal investment and reinsurance with dependent financial and insurance risks," Papers 2103.05777, arXiv.org.
    11. George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
    12. Katrien Antonio & Emiliano Valdez, 2012. "Statistical concepts of a priori and a posteriori risk classification in insurance," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 187-224, June.
    13. Tzougas, George, 2020. "EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: an application to insurance ratemaking," LSE Research Online Documents on Economics 106539, London School of Economics and Political Science, LSE Library.
    14. Cossette, Hélène & Marceau, Etienne & Trufin, Julien & Zuyderhoff, Pierre, 2020. "Ruin-based risk measures in discrete-time risk models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 246-261.
    15. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2014. "Nonlife ratemaking and risk management with Bayesian generalized additive models for location, scale, and shape," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 225-249.
    16. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," LIDAM Discussion Papers ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Serpil Bülbül & Kemal Baykal, 2016. "Optimal Bonus-Malus System Design in Motor Third-Party Liability Insurance in Turkey: Negative Binomial Model," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(8), pages 205-205, August.
    18. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    19. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    20. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ise:remwps:wp01932021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sandra Araújo (email available below). General contact details of provider: https://rem.rc.iseg.ulisboa.pt/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.