IDEAS home Printed from https://ideas.repec.org/p/isa/wpaper/68.html
   My bibliography  Save this paper

The seasonality of ISAE business and consumer surveys: methodological aspects and empirical evidence

Author

Listed:
  • Luciana Crosilla

    (ISAE - Institute for Studies and Economic Analyses\par)

Abstract

The aim of this work is to explain and assess the results of the application of the TRAMO-SEATS seasonal adjustment method on the data of the ISAE manufacturing business and consumer surveys. In particular, the study begins by focusing on the description of some of the typical problems of the seasonal adjustment of qualitative series, in relation to the operational choices to be made when applying the procedure ( the \lquote trading day effect\rquote , logarithmic transformation of the series, choice of a temporal interval etc ) making the choices explicit for the series of analysis. Subsequently, the characteristics of the seasonal component of the series will be analysed; special attention is given to the identification of the non-stationary seasonality of each series by using a procedure which consists in the extension of a test of the Dickey-Fuller kind to verify the unit roots at the seasonal frequencies. Later, on the basis of the considerations which have been made and on the results which have been previously obtained, the models which have been obtained applying Tramo-Seats will then be described highlighting the flexibility of the method in grasping the stochastic characteristics of the seasonality of the series.

Suggested Citation

  • Luciana Crosilla, 2006. "The seasonality of ISAE business and consumer surveys: methodological aspects and empirical evidence," ISAE Working Papers 68, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
  • Handle: RePEc:isa:wpaper:68
    as

    Download full text from publisher

    File URL: http://lipari.istat.it/digibib/Working_Papers/WP_68_2006_Crosilla.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fok, D. & Franses, Ph.H.B.F. & Paap, R., 2005. "Performance of Seasonal Adjustment Procedures: Simulation and Empirical Results," Econometric Institute Research Papers EI 2005-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Franses, Philip Hans, 1991. "Seasonality, non-stationarity and the forecasting of monthly time series," International Journal of Forecasting, Elsevier, vol. 7(2), pages 199-208, August.
    3. Giancarlo Bruno, 2001. "Seasonal Adjustment of Italian Industrial Production Index using Tramo-Seats," ISAE Working Papers 18, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    4. Cubadda, G. & Sabbatini, R., 1997. "The Seasonality of the Italian Cost-of-Living Index," Papers 313, Banca Italia - Servizio di Studi.
    5. Franses, Philip Hans, 1996. "Periodicity and Stochastic Trends in Economic Time Series," OUP Catalogue, Oxford University Press, number 9780198774549.
    6. Giancarlo Bruno & Claudio Lupi, 2004. "Forecasting industrial production and the early detection of turning points," Empirical Economics, Springer, vol. 29(3), pages 647-671, September.
    7. Jeffrey A. Miron, 1996. "The Economics of Seasonal Cycles," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262133237, April.
    8. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    9. Martelli, Bianca Maria, 1998. "Le Inchieste Congiunturali dell'ISCO: aspetti metodologici; Chapter 1 of: Le inchieste dell'ISCO come strumento di analisi della congiuntura economica [The ISCO short term surveys: methodological a," MPRA Paper 16331, University Library of Munich, Germany.
    10. Paap, Richard & Franses, Philip Hans & Hoek, Henk, 1997. "Mean shifts, unit roots and forecasting seasonal time series," International Journal of Forecasting, Elsevier, vol. 13(3), pages 357-368, September.
    11. Marco Malgarini & Patrizia Margani, 2005. "Psychology, consumer sentiment and household expenditures: a disaggregated analysis," ISAE Working Papers 58, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    12. Bruno Giancarlo & Edoardo Otranto, 2001. "The Choice of Time Interval in Seasonal Adjustment: Characterization and Tools," ISAE Working Papers 21, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    13. Regina Kaiser & Agustín Maravall, 1999. "Seasonal Outliers in Time Series," Working Papers 9915, Banco de España.
    14. Bianca Maria Martelli & Gaia Rocchetti, 2006. "The ISAE Market Services Survey: Methodological Upgrading, Survey Reliability, First Empirical Results," ISAE Working Papers 71, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    15. Regina Kaiser & Agustín Maravall, 2000. "An Application of TRAMO-SEATS: Changes in Seasonality and Current Trend-Cycle Assessment: the German Retail Trade Turnover Series," Working Papers 0011, Banco de España.
    16. D'Elia, Enrico, 1991. "La quantificazione dei risultati dei sondaggi congiunturali: un confronto tra procedure [Quantifying the results of tendency surveys: a comparison among different procedures]," MPRA Paper 16434, University Library of Munich, Germany.
    17. Tatiana Cesaroni & Marco Malgarini & Gaia Rocchetti, 2005. "L'inchiesta ISAE sugli investimenti delle imprese manifatturiere ed estrattive: aspetti metodologici e risultati," ISAE Working Papers 50, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osborn, Denise R. & Heravi, Saeed & Birchenhall, C. R., 1999. "Seasonal unit roots and forecasts of two-digit European industrial production," International Journal of Forecasting, Elsevier, vol. 15(1), pages 27-47, February.
    2. Paulo Rodrigues & Denise Osborn, 1999. "Performance of seasonal unit root tests for monthly data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 985-1004.
    3. Beenstock, Michael & Reingewertz, Yaniv & Paldor, Nathan, 2016. "Testing the historic tracking of climate models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1234-1246.
    4. Patrice Guillotreau & Frédéric Lantz & Lesya Nadzon & Jonathan Rault & Olivier Maury, 2023. "Price Transmission between Energy and Fish Markets: Are Oil Rates Good Predictors of Tuna Prices?," Marine Resource Economics, University of Chicago Press, vol. 38(1), pages 29-46.
    5. Gabriel Pons Rotger, 2004. "Seasonal Unit Root Testing Based on the Temporal Aggregation of Seasonal Cycles," Economics Working Papers 2004-1, Department of Economics and Business Economics, Aarhus University.
    6. Malgarini, Marco & Margani, Patrizia & Martelli, Bianca Maria, 2005. "Re-engineering the ISAE manufacturing survey," MPRA Paper 42440, University Library of Munich, Germany.
    7. Svend Hylleberg, 2006. "Seasonal Adjustment," Economics Working Papers 2006-04, Department of Economics and Business Economics, Aarhus University.
    8. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, October.
    9. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, April.
    10. Gustavsson, Patrik & Nordström, Jonas, 1999. "The Impact of Seasonal Unit Roots and Vector ARMA Modeling on Forecasting Monthly Tourism Flows," Working Paper Series 150, Trade Union Institute for Economic Research, revised 01 Jul 2000.
    11. Dillon Alleyne, 2006. "Can Seasonal Unit Root Testing Improve the Forecasting Accuracy of Tourist Arrivals?," Tourism Economics, , vol. 12(1), pages 45-64, March.
    12. Swanson, Norman R. & Urbach, Richard, 2015. "Prediction and simulation using simple models characterized by nonstationarity and seasonality," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 312-323.
    13. Wells, J. M., 1997. "Modelling seasonal patterns and long-run trends in U.S. time series," International Journal of Forecasting, Elsevier, vol. 13(3), pages 407-420, September.
    14. Guillotreau Patrice & Frédéric Lantz & Lesya Nadzon & Jonathan Rault & Olivier Maury, 2023. "Price Transmission between Energy and Fish Markets: Are Oil Rates Good Predictors of Tuna Prices? [Transmission des prix entre les marchés de l'énergie et du poisson : est-ce que les cours du pétro," Post-Print hal-03948692, HAL.
    15. Paulo Rodrigues & Philip Hans Franses, 2005. "A sequential approach to testing seasonal unit roots in high frequency data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(6), pages 555-569.
    16. Hans Franses, Philip & Koehler, Anne B., 1998. "A model selection strategy for time series with increasing seasonal variation," International Journal of Forecasting, Elsevier, vol. 14(3), pages 405-414, September.
    17. Giancarlo Bruno & Claudio Lupi, 2004. "Forecasting industrial production and the early detection of turning points," Empirical Economics, Springer, vol. 29(3), pages 647-671, September.
    18. Hamori, Shigeyuki, 2001. "Seasonality and stock returns: some evidence from Japan," Japan and the World Economy, Elsevier, vol. 13(4), pages 463-481, December.
    19. Evren Erdoğan Cosar, 2006. "Seasonal behaviour of the consumer price index of Turkey," Applied Economics Letters, Taylor & Francis Journals, vol. 13(7), pages 449-455.
    20. Artur Silva Lopes, 2006. "Deterministic seasonality in Dickey–Fuller tests: should we care?," Empirical Economics, Springer, vol. 31(1), pages 165-182, March.

    More about this item

    Keywords

    Seasonal adjustment; ARIMA models; Survey; Tramo-Seats;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isa:wpaper:68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefania Rossetti (email available below). General contact details of provider: https://edirc.repec.org/data/istgvit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.