IDEAS home Printed from https://ideas.repec.org/p/ipt/iptwpa/jrc108572.html
   My bibliography  Save this paper

Data science applications to connected vehicles: Key barriers to overcome

Author

Abstract

The connected vehicles will generate huge amount of pervasive and real time data, at very high frequencies. This poses new challenges for Data science. How to analyse these data and how to address short-term and long-term storage are some of the key barriers to overcome.

Suggested Citation

  • Alvaro Gomez Losada, 2017. "Data science applications to connected vehicles: Key barriers to overcome," JRC Research Reports JRC108572, Joint Research Centre.
  • Handle: RePEc:ipt:iptwpa:jrc108572
    as

    Download full text from publisher

    File URL: https://publications.jrc.ec.europa.eu/repository/handle/JRC108572
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carbone, Anna & Jensen, Meiko & Sato, Aki-Hiro, 2016. "Challenges in data science: a complex systems perspective," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    2. Ausloos, Marcel & Cerqueti, Roy & Mir, Tariq A., 2017. "Data science for assessing possible tax income manipulation: The case of Italy," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 238-256.
    3. Fabrizio Bonacina & Alessandro Corsini & Lucio Cardillo & Francesca Lucchetta, 2019. "Complex Network Analysis of Photovoltaic Plant Operations and Failure Modes," Energies, MDPI, vol. 12(10), pages 1-14, May.
    4. Iovanella, Antonio, 2024. "Exploiting network science in business process management: A conceptual framework," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    5. Deng, Ziwei & Li, Yuxuan & Zhu, Hongqiu & Huang, Keke & Tang, Zhaohui & Wang, Zhen, 2020. "Sparse stacked autoencoder network for complex system monitoring with industrial applications," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipt:iptwpa:jrc108572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publication Officer (email available below). General contact details of provider: https://edirc.repec.org/data/ipjrces.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.