IDEAS home Printed from https://ideas.repec.org/p/inq/inqwps/ecineq2013-305.html
   My bibliography  Save this paper

The binomial Gini inequality indices and the binomial decomposition of welfare functions

Author

Listed:
  • Silvia Bortot

    (Department of Economics and Management, University of Trento)

  • Ricardo Alberto Marques Pereira

    (Department of Economics and Management, University of Trento)

Abstract

In the context of Social Welfare and Choquet integration, we briefly review, on the one hand, the generalized Gini welfare functions and inequality indices for populations of n>=2 individuals, and on the other hand, the Mobius representation framework for Choquet integration, particularly in the case of k-additive symmetric capacities. We recall the binomial decomposition of OWA functions due to Calvo and De Baets [14] and we examine it in the restricted context of generalized Gini welfare functions, with the addition of appropriate S-concavity conditions. We show that the original expression of the binomial decomposition can be formulated in terms of two equivalent functional bases, the binomial Gini welfare functions and the Atkinson-Kolm-Sen (AKS) associated binomial Gini inequality indices, according to Blackorby and Donaldson's correspondence formula. The binomial Gini pairs of welfare functions and inequality indices are described by a parameter j = 1,...,n, associated with the distributional judgements involved. The j-th generalized Gini pair focuses on the (n - j + 1)/n poorest fraction of the population and is insensitive to income transfers within the complementary richest fraction of the population.

Suggested Citation

  • Silvia Bortot & Ricardo Alberto Marques Pereira, 2013. "The binomial Gini inequality indices and the binomial decomposition of welfare functions," Working Papers 305, ECINEQ, Society for the Study of Economic Inequality.
  • Handle: RePEc:inq:inqwps:ecineq2013-305
    as

    Download full text from publisher

    File URL: http://www.ecineq.org/milano/WP/ECINEQ2013-305.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oihana Aristondo & José Luis García-Lapresta & Casilda Lasso de la Vega & Ricardo Alberto Marques Pereira, 2011. "The Gini index,the dual decomposition of aggregation functions, and the consistent measurement of inequality," Working Papers 203, ECINEQ, Society for the Study of Economic Inequality.
    2. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    3. Donaldson, David & Weymark, John A., 1983. "Ethically flexible gini indices for income distributions in the continuum," Journal of Economic Theory, Elsevier, vol. 29(2), pages 353-358, April.
    4. Aaberge, Rolf, 2001. "Axiomatic Characterization of the Gini Coefficient and Lorenz Curve Orderings," Journal of Economic Theory, Elsevier, vol. 101(1), pages 115-132, November.
    5. Gajdos, Thibault, 2002. "Measuring Inequalities without Linearity in Envy: Choquet Integrals for Symmetric Capacities," Journal of Economic Theory, Elsevier, vol. 106(1), pages 190-200, September.
    6. Chateauneuf, Alain & Jaffray, Jean-Yves, 1989. "Some characterizations of lower probabilities and other monotone capacities through the use of Mobius inversion," Mathematical Social Sciences, Elsevier, vol. 17(3), pages 263-283, June.
    7. Rolf Aaberge, 2007. "Gini’s nuclear family," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 5(3), pages 305-322, December.
    8. Oihana Aristondo & JosŽ Luis Garc’a-Lapresta & Casilda Lasso de la Vega & Ricardo Alberto Marques Pereira, 2012. "Classical inequality indices, welfare functions, and the dual decomposition," DISA Working Papers 2012/06, Department of Computer and Management Sciences, University of Trento, Italy, revised Jun 2012.
    9. Donaldson, David & Weymark, John A., 1980. "A single-parameter generalization of the Gini indices of inequality," Journal of Economic Theory, Elsevier, vol. 22(1), pages 67-86, February.
    10. Ebert, Udo, 1987. "Size and distribution of incomes as determinants of social welfare," Journal of Economic Theory, Elsevier, vol. 41(1), pages 23-33, February.
    11. Satya R. Chakravarty, 2009. "Inequality, Polarization and Poverty," Economic Studies in Inequality, Social Exclusion, and Well-Being, Springer, number 978-0-387-79253-8, July.
    12. Charles Blackorby & David Donaldson & Maria Auersperg, 1981. "A New Procedure for the Measurement of Inequality within and among Population Subgroups," Canadian Journal of Economics, Canadian Economics Association, vol. 14(4), pages 665-685, November.
    13. Itzhak Gilboa & David Schmeidler, 1992. "Canonical Representation of Set Functions," Discussion Papers 986, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    14. Chakravarty, Satya R, 1988. "Extended Gini Indices of Inequality," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(1), pages 147-156, February.
    15. Bossert, Walter, 1990. "An axiomatization of the single-series Ginis," Journal of Economic Theory, Elsevier, vol. 50(1), pages 82-92, February.
    16. Blackorby, Charles & Donaldson, David, 1980. "A Theoretical Treatment of Indices of Absolute Inequality," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(1), pages 107-136, February.
    17. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    18. Blackorby, Charles & Donaldson, David, 1978. "Measures of relative equality and their meaning in terms of social welfare," Journal of Economic Theory, Elsevier, vol. 18(1), pages 59-80, June.
    19. Itzhak Gilboa & David Schmeidler, 1995. "Canonical Representation of Set Functions," Mathematics of Operations Research, INFORMS, vol. 20(1), pages 197-212, February.
    20. Grabisch, Michel, 1996. "The application of fuzzy integrals in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 89(3), pages 445-456, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Bortot & Ricardo Alberto Marques Pereira & Thuy H. Nguyen, 2015. "Welfare functions and inequality indices in the binomial decomposition of OWA functions," DEM Discussion Papers 2015/08, Department of Economics and Management.
    2. Silvia Bortot & Ricardo Alberto Marques Pereira & Thuy Nguyen, 2015. "On the binomial decomposition of OWA functions, the 3-additive case in n dimensions," Working Papers 360, ECINEQ, Society for the Study of Economic Inequality.
    3. Satya R. Chakravarty & Pietro Muliere, 2003. "Welfare indicators: A review and new perspectives. 1. Measurement of inequality," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 457-497.
    4. Oihana Aristondo & JosŽ Luis Garc’a-Lapresta & Casilda Lasso de la Vega & Ricardo Alberto Marques Pereira, 2012. "Classical inequality indices, welfare functions, and the dual decomposition," DISA Working Papers 2012/06, Department of Computer and Management Sciences, University of Trento, Italy, revised Jun 2012.
    5. Satya Chakravarty, 2007. "A deprivation-based axiomatic characterization of the absolute Bonferroni index of inequality," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 5(3), pages 339-351, December.
    6. Sorger, Gerhard & Stark, Oded, 2013. "Income redistribution going awry: The reversal power of the concern for relative deprivation," Journal of Economic Behavior & Organization, Elsevier, vol. 86(C), pages 1-9.
    7. Aaberge, Rolf & Mogstad, Magne & Peragine, Vito, 2011. "Measuring long-term inequality of opportunity," Journal of Public Economics, Elsevier, vol. 95(3-4), pages 193-204, April.
    8. Rolf Aaberge, 2009. "Ranking intersecting Lorenz curves," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 33(2), pages 235-259, August.
    9. Rolf Aaberge & Ugo Colombino, 2005. "Designing Optimal Taxes With a Microeconometric Model of Household Labour Supply," Public Economics 0510013, University Library of Munich, Germany.
    10. Yoram Amiel & Frank A Cowell, 1997. "Inequality, Welfare and Monotonicity," STICERD - Distributional Analysis Research Programme Papers 29, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    11. Rolf Aaberge & Ugo Colombino, 2012. "Accounting for family background when designing optimal income taxes: a microeconometric simulation analysis," Journal of Population Economics, Springer;European Society for Population Economics, vol. 25(2), pages 741-761, January.
    12. Rodríguez, Juan Gabriel & Salas, Rafael, 2014. "The Gini coefficient: Majority voting and social welfare," Journal of Economic Theory, Elsevier, vol. 152(C), pages 214-223.
    13. Ebert U., 1996. "Income inequality and differences in household size," Mathematical Social Sciences, Elsevier, vol. 31(1), pages 57-58, February.
    14. Satya R. Chakravarty & Nachiketa Chattopadhyay & Conchita D'Ambrosio, 2016. "On a Family of Achievement and Shortfall Inequality Indices," Health Economics, John Wiley & Sons, Ltd., vol. 25(12), pages 1503-1513, December.
    15. Rolf Aaberge, 2003. "Mean-Spread-Preserving Transformations," Discussion Papers 360, Statistics Norway, Research Department.
    16. Satya R. Chakravarty, 2009. "Equity and efficiency as components of a social welfare function," International Journal of Economic Theory, The International Society for Economic Theory, vol. 5(2), pages 181-199, June.
    17. Chakravarty, Satya R. & Sarkar, Palash, 2022. "A synthesis of local and effective tax progressivity measurement," MPRA Paper 115180, University Library of Munich, Germany.
    18. Rolf Aaberge & Magne Mogstad, 2011. "Robust inequality comparisons," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 9(3), pages 353-371, September.
    19. repec:ebl:ecbull:v:3:y:2003:i:19:p:1-16 is not listed on IDEAS
    20. Rolf Aaberge & Ugo Colombino & John E. Roemer, 2003. "Optimal Taxation According to Equality of Opportunity: a Microeconometric Simulation Analysis," ICER Working Papers 05-2003, ICER - International Centre for Economic Research.
    21. M. Fort & N. Schneeweis & R. Winter-Ebmer, 2011. "More Schooling, More Children: Compulsory Schooling Reforms and Fertility in Europe," Working Papers wp787, Dipartimento Scienze Economiche, Universita' di Bologna.

    More about this item

    Keywords

    Social welfare; Generalized Gini welfare functions and inequality indices; symmetric capacities and Choquet integrals; OWA functions; Binomial decomposition and k-additivity.;
    All these keywords.

    JEL classification:

    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • I31 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - General Welfare, Well-Being

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inq:inqwps:ecineq2013-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maria Ana Lugo (email available below). General contact details of provider: https://edirc.repec.org/data/ecineea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.