IDEAS home Printed from https://ideas.repec.org/p/inn/wpaper/2013-12.html
   My bibliography  Save this paper

Bayesian generalized additive models for location, scale and shape for zero-inflated and overdispersed count data

Author

Listed:
  • Nadja Klein
  • Thomas Kneib
  • Stefan Lang

Abstract

Frequent problems in applied research that prevent the application of the classical Poisson log-linear model for analyzing count data include overdispersion, an excess of zeros compared to the Poisson distribution, correlated responses, as well as complex predictor structures comprising nonlinear effects of continuous covariates, interactions or spatial effects. We propose a general class of Bayesian generalized additive models for zero-inflated and overdispersed count data within the framework of generalized additive models for location, scale and shape where semiparametric predictors can be specified for several parameters of a count data distribution. As special instances, we consider the zero-inflated Poisson, the negative binomial and the zero-inflated negative binomial distribution as standard options for applied work. The additive predictor specifications rely on basis function approximations for the different types of effects in combination with Gaussian smoothness priors. We develop Bayesian inference based on Markov chain Monte Carlo simulation techniques where suitable proposal densities are constructed based on iteratively weighted least squares approximations to the full conditionals. To ensure practicability of the inference we consider theoretical properties like the involved question whether the joint posterior is proper. The proposed approach is evaluated in simulation studies and applied to count data arising from patent citations and claim frequencies in car insurances. For the comparison of models with respect to the distribution, we consider quantile residuals as an effective graphical device and scoring rules that allow to quantify the predictive ability of the models. The deviance information criterion is used for further model specification.

Suggested Citation

  • Nadja Klein & Thomas Kneib & Stefan Lang, 2013. "Bayesian generalized additive models for location, scale and shape for zero-inflated and overdispersed count data," Working Papers 2013-12, Faculty of Economics and Statistics, Universität Innsbruck.
  • Handle: RePEc:inn:wpaper:2013-12
    as

    Download full text from publisher

    File URL: https://www2.uibk.ac.at/downloads/c4041030/wpaper/2013-12.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2014. "Nonlife ratemaking and risk management with Bayesian generalized additive models for location, scale, and shape," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 225-249.
    2. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," LIDAM Discussion Papers ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Nadja Klein & Michel Denuit & Stefan Lang & Thomas Kneib, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," Working Papers 2013-24, Faculty of Economics and Statistics, Universität Innsbruck.
    4. Nadja Klein & Thomas Kneib & Stefan Lang, 2013. "Bayesian Structured Additive Distributional Regression," Working Papers 2013-23, Faculty of Economics and Statistics, Universität Innsbruck.

    More about this item

    Keywords

    iteratively weighted least squares; Markov chain Monte Carlo; penalized splines; zero-inflated negative binomial; zero-inflated Poisson;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inn:wpaper:2013-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Janette Walde (email available below). General contact details of provider: https://edirc.repec.org/data/fuibkat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.