IDEAS home Printed from https://ideas.repec.org/p/imf/imfwpa/2007-290.html
   My bibliography  Save this paper

Stochastic Volatilities and Correlations, Extreme Values and Modeling the Macroeconomic Environment, Under Which Brazilian Banks Operate

Author

Listed:
  • Mr. Marcos R Souto
  • Mr. Theodore M. Barnhill

Abstract

Using monthly data for a set of variables, we examine the out-of-sample performance of various variance/covariance models and find that no model has consistently outperformed the others. We also show that it is possible to increase the probability mass toward the tails and to match reasonably well the historical evolution of volatilities by changing a decay factor appropriately. Finally, we implement a simple stochastic volatility model and simulate the credit transition matrix for two large Brazilian banks and show that this methodology has the potential to improve simulated transition probabilities as compared to the constant volatility case. In particular, it can shift CTM probabilities towards lower credit risk categories.

Suggested Citation

  • Mr. Marcos R Souto & Mr. Theodore M. Barnhill, 2007. "Stochastic Volatilities and Correlations, Extreme Values and Modeling the Macroeconomic Environment, Under Which Brazilian Banks Operate," IMF Working Papers 2007/290, International Monetary Fund.
  • Handle: RePEc:imf:imfwpa:2007/290
    as

    Download full text from publisher

    File URL: http://www.imf.org/external/pubs/cat/longres.aspx?sk=21502
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    2. Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
    3. Mr. Taimur Baig & Mr. Ilan Goldfajn, 2000. "The Russian Default and the Contagion to Brazil," IMF Working Papers 2000/160, International Monetary Fund.
    4. Akgiray, Vedat & Booth, G Geoffrey, 1988. "The Stable-Law Model of Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 51-57, January.
    5. Akgiray, Vedat, 1989. "Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts," The Journal of Business, University of Chicago Press, vol. 62(1), pages 55-80, January.
    6. Kate Adjaoute & Martin Bruand & Rajna Gibson‐Asner, 1998. "On the Predictability of the Stock Market Volatility: Does History Matter?," European Financial Management, European Financial Management Association, vol. 4(3), pages 293-319, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barnhill, Theodore M. & Souto, Marcos Rietti, 2008. "Systemic bank risk in Brazil: an assessment of correlated market, credit, sovereign and inter-bank risk in an environment with stochastic volatilities and correlations," Discussion Paper Series 2: Banking and Financial Studies 2008,13, Deutsche Bundesbank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ercan Balaban & Asli Bayar & Robert Faff, 2006. "Forecasting stock market volatility: Further international evidence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(2), pages 171-188.
    2. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    3. David McMillan & Raquel Quiroga Garcia, 2009. "Intra-day volatility forecasts," Applied Financial Economics, Taylor & Francis Journals, vol. 19(8), pages 611-623.
    4. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    5. Victor Bello Accioly & Beatriz Vaz de Melo Mendes, 2016. "Assessing the Impact of the Realized Range on the (E)GARCH Volatility: Evidence from Brazil," Brazilian Business Review, Fucape Business School, vol. 13(2), pages 1-26, March.
    6. McMillan, David G. & Kambouroudis, Dimos, 2009. "Are RiskMetrics forecasts good enough? Evidence from 31 stock markets," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 117-124, June.
    7. Kambouroudis, Dimos S. & McMillan, David G., 2015. "Is there an ideal in-sample length for forecasting volatility?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 114-137.
    8. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    9. repec:kap:iaecre:v:14:y:2008:i:1:p:112-124 is not listed on IDEAS
    10. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    11. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
    12. Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CARF F-Series CARF-F-145, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    13. SUCARRAT, Genaro, 2006. "The first stage in Hendry’s reduction theory revisited," LIDAM Discussion Papers CORE 2006082, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    15. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    16. Pandey, Ajay, 2003. "Modeling and Forecasting Volatility in Indian Capital Markets," IIMA Working Papers WP2003-08-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    17. Oberndorfer, Ulrich & Schmidt, Peter & Wagner, Marcus & Ziegler, Andreas, 2013. "Does the stock market value the inclusion in a sustainability stock index? An event study analysis for German firms," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 497-509.
    18. Ercan Balaban & Charalambos Th. Constantinou, 2006. "Volatility clustering and event-induced volatility: Evidence from UK mergers and acquisitions," The European Journal of Finance, Taylor & Francis Journals, vol. 12(5), pages 449-453.
    19. Roberto Ferulano, 2009. "A Mixed Historical Formula to forecast volatility," Journal of Asset Management, Palgrave Macmillan, vol. 10(2), pages 124-136, June.
    20. Shiyi Chen & Wolfgang K. Härdle & Kiho Jeong, 2010. "Forecasting volatility with support vector machine-based GARCH model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 406-433.
    21. Ioannis A. Tampakoudis & Demetres N. Subeniotis & Ioannis G. Kroustalis, 2012. "Modelling volatility during the current financial crisis: an empirical analysis of the US and the UK stock markets," International Journal of Trade and Global Markets, Inderscience Enterprises Ltd, vol. 5(3/4), pages 171-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imf:imfwpa:2007/290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Akshay Modi (email available below). General contact details of provider: https://edirc.repec.org/data/imfffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.