IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/43-16.html
   My bibliography  Save this paper

Anti-concentration and honest, adaptive confidence bands

Author

Listed:
  • Victor Chernozhukov

    (Institute for Fiscal Studies and MIT)

  • Denis Chetverikov

    (Institute for Fiscal Studies and UCLA)

  • Kengo Kato

    (Institute for Fiscal Studies)

Abstract

Modern construction of uniform con?dence bands for nonpara-metric densities (and other functions) often relies on the classical Smirnov-Bickel-Rosenblatt (SBR) condition; see, for example, Giné and Nickl (2010). This condition requires the existence of a limit distribution of an extreme value type for the supremum of a studentized empirical process (equivalently, for the supremum of a Gaussian process with the same covariance function as that of the studentized empirical process). The principal contribution of this paper is to remove the need for this classical condition. We show that a considerably weaker sufficient condition is derived from an anti-concentration property of the supremum of the approximating Gaussian process, and we derive an inequality leading to such a property for separable Gaussian processes. We refer to the new condition as a generalized SBR condition. Our new result shows that the supremum does not concentrate too fast around any value. We then apply this result to derive a Gaussian multiplier boot-strap procedure for constructing honest con?dence bands for non-parametric density estimators (this result can be applied in other nonparametric problems as well). An essential advantage of our ap-proach is that it applies generically even in those cases where the limit distribution of the supremum of the studentized empirical pro-cess does not exist (or is unknown). This is of particular importance in problems where resolution levels or other tuning parameters have been chosen in a data-driven fashion, which is needed for adaptive constructions of the con?dence bands. Finally, of independent inter-est is our introduction of a new, practical version of Lepski’s method, which computes the optimal, non-conservative resolution levels via a Gaussian multiplier bootstrap method.

Suggested Citation

  • Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2016. "Anti-concentration and honest, adaptive confidence bands," CeMMAP working papers CWP43/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:43/16
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/cemmap/wps/cwp431616.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    2. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximation of suprema of empirical processes," CeMMAP working papers CWP44/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    4. Y. Xia, 1998. "Bias‐corrected confidence bands in nonparametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 797-811.
    5. Bissantz, Nicolai & Dümbgen, Lutz & Holzmann, Hajo & Munk, Axel, 2007. "Nonparametric confidence bands in deconvolution density estimation," Technical Reports 2007,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers 65/13, Institute for Fiscal Studies.
    2. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    3. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximation of suprema of empirical processes," CeMMAP working papers CWP44/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Comparison and anti-concentration bounds for maxima of Gaussian random vectors," CeMMAP working papers CWP71/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers 49/16, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2015. "Some new asymptotic theory for least squares series: Pointwise and uniform results," Journal of Econometrics, Elsevier, vol. 186(2), pages 345-366.
    2. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "On the asymptotic theory for least squares series: pointwise and uniform results," CeMMAP working papers CWP73/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Xiaohong Chen & Timothy M. Christensen, 2015. "Optimal sup-norm rates, adaptivity and inference in nonparametric instrumental variables estimation," CeMMAP working papers 32/15, Institute for Fiscal Studies.
    4. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    5. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Arun G. Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2019. "Best Linear Approximations to Set Identified Functions: With an Application to the Gender Wage Gap," NBER Working Papers 25593, National Bureau of Economic Research, Inc.
    7. C de Chaisemartin & X D’HaultfŒuille, 2018. "Fuzzy Differences-in-Differences," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 999-1028.
    8. Xiaohong Chen & Timothy Christensen, 2013. "Optimal Sup-norm Rates, Adaptivity and Inference in Nonparametric Instrumental Variables Estimation," Cowles Foundation Discussion Papers 1923R, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    9. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    10. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    11. Li, Jia & Liao, Zhipeng, 2020. "Uniform nonparametric inference for time series," Journal of Econometrics, Elsevier, vol. 219(1), pages 38-51.
    12. Victor Chernozhukov & Whitney K. Newey & Andres Santos, 2023. "Constrained Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 91(2), pages 709-736, March.
    13. Denis Chetverikov, 2012. "Testing regression monotonicity in econometric models," CeMMAP working papers CWP35/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximation of suprema of empirical processes," CeMMAP working papers 44/12, Institute for Fiscal Studies.
    15. Arun Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2012. "Inference for best linear approximations to set identified functions," CeMMAP working papers 43/12, Institute for Fiscal Studies.
    16. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    17. Kazuhiko Shinoda & Takahiro Hoshino, 2022. "Orthogonal Series Estimation for the Ratio of Conditional Expectation Functions," Papers 2212.13145, arXiv.org.
    18. Matias D. Cattaneo & Max H. Farrell & Yingjie Feng, 2018. "Large Sample Properties of Partitioning-Based Series Estimators," Papers 1804.04916, arXiv.org, revised Jun 2019.
    19. Zheng Fang & Juwon Seo, 2019. "A Projection Framework for Testing Shape Restrictions That Form Convex Cones," Papers 1910.07689, arXiv.org, revised Sep 2021.
    20. Ariel Pakes & Jack Porter, 2024. "Moment inequalities for multinomial choice with fixed effects," Quantitative Economics, Econometric Society, vol. 15(1), pages 1-25, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:43/16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.