IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1804.04916.html
   My bibliography  Save this paper

Large Sample Properties of Partitioning-Based Series Estimators

Author

Listed:
  • Matias D. Cattaneo
  • Max H. Farrell
  • Yingjie Feng

Abstract

We present large sample results for partitioning-based least squares nonparametric regression, a popular method for approximating conditional expectation functions in statistics, econometrics, and machine learning. First, we obtain a general characterization of their leading asymptotic bias. Second, we establish integrated mean squared error approximations for the point estimator and propose feasible tuning parameter selection. Third, we develop pointwise inference methods based on undersmoothing and robust bias correction. Fourth, employing different coupling approaches, we develop uniform distributional approximations for the undersmoothed and robust bias-corrected t-statistic processes and construct valid confidence bands. In the univariate case, our uniform distributional approximations require seemingly minimal rate restrictions and improve on approximation rates known in the literature. Finally, we apply our general results to three partitioning-based estimators: splines, wavelets, and piecewise polynomials. The supplemental appendix includes several other general and example-specific technical and methodological results. A companion R package is provided.

Suggested Citation

  • Matias D. Cattaneo & Max H. Farrell & Yingjie Feng, 2018. "Large Sample Properties of Partitioning-Based Series Estimators," Papers 1804.04916, arXiv.org, revised Jun 2019.
  • Handle: RePEc:arx:papers:1804.04916
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1804.04916
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    2. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2015. "Some new asymptotic theory for least squares series: Pointwise and uniform results," Journal of Econometrics, Elsevier, vol. 186(2), pages 345-366.
    3. Victor Chernozhukov & Mert Demirer & Esther Duflo & Ivan Fernandez-Val, 2017. "Generic machine learning inference on heterogenous treatment effects in randomized experiments," CeMMAP working papers CWP61/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Victor Chernozhukov & Whitney K. Newey & Andres Santos, 2023. "Constrained Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 91(2), pages 709-736, March.
    5. Matias D. Cattaneo & Richard K. Crump & Max H. Farrell & Ernst Schaumburg, 2020. "Characteristic-Sorted Portfolios: Estimation and Inference," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 531-551, July.
    6. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    7. Chen, Xiaohong & Christensen, Timothy M., 2015. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," Journal of Econometrics, Elsevier, vol. 188(2), pages 447-465.
    8. Sebastian Calonico & Matias D. Cattaneo & Rocío Titiunik, 2015. "Optimal Data-Driven Regression Discontinuity Plots," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1753-1769, December.
    9. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng Fang & Juwon Seo, 2019. "A Projection Framework for Testing Shape Restrictions That Form Convex Cones," Papers 1910.07689, arXiv.org, revised Sep 2021.
    2. Butts, Kyle, 2023. "JUE Insight: Difference-in-differences with geocoded microdata," Journal of Urban Economics, Elsevier, vol. 133(C).
    3. Byunghoon Kang, 2019. "Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms," Papers 1909.12162, arXiv.org, revised Feb 2020.
    4. Matias D. Cattaneo & Richard K. Crump & Max H. Farrell & Yingjie Feng, 2019. "Binscatter Regressions," Papers 1902.09615, arXiv.org, revised Jul 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    2. Li, Jia & Liao, Zhipeng, 2020. "Uniform nonparametric inference for time series," Journal of Econometrics, Elsevier, vol. 219(1), pages 38-51.
    3. Byunghoon Kang, 2019. "Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms," Papers 1909.12162, arXiv.org, revised Feb 2020.
    4. Zheng Fang & Juwon Seo, 2019. "A Projection Framework for Testing Shape Restrictions That Form Convex Cones," Papers 1910.07689, arXiv.org, revised Sep 2021.
    5. Christoph Breunig & Stefan Hoderlein, 2016. "Nonparametric Specification Testing in Random Parameter Models," Boston College Working Papers in Economics 897, Boston College Department of Economics.
    6. Christoph Breunig & Stefan Hoderlein, 2018. "Specification testing in random coefficient models," Quantitative Economics, Econometric Society, vol. 9(3), pages 1371-1417, November.
    7. Christoph Breunig & Peter Haan, 2018. "Nonparametric Regression with Selectively Missing Covariates," Papers 1810.00411, arXiv.org, revised Oct 2020.
    8. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    9. Byunghoon Kang, 2018. "Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms," Working Papers 240829404, Lancaster University Management School, Economics Department.
    10. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    11. Zhou, Weilun & Gao, Jiti & Harris, David & Kew, Hsein, 2024. "Semi-parametric single-index predictive regression models with cointegrated regressors," Journal of Econometrics, Elsevier, vol. 238(1).
    12. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    13. Breunig, Christoph, 2021. "Varying random coefficient models," Journal of Econometrics, Elsevier, vol. 221(2), pages 381-408.
    14. Victor Chernozhukov & Whitney K. Newey & Andres Santos, 2023. "Constrained Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 91(2), pages 709-736, March.
    15. Matias D. Cattaneo & Richard K. Crump & Max H. Farrell & Yingjie Feng, 2024. "On Binscatter," American Economic Review, American Economic Association, vol. 114(5), pages 1488-1514, May.
    16. Cui, Wenhao & Hu, Jie & Wang, Jiandong, 2024. "Nonparametric estimation for high-frequency data incorporating trading information," Journal of Econometrics, Elsevier, vol. 240(1).
    17. Kazuhiko Shinoda & Takahiro Hoshino, 2022. "Orthogonal Series Estimation for the Ratio of Conditional Expectation Functions," Papers 2212.13145, arXiv.org.
    18. Qiu, Chen & Otsu, Taisuke, 2022. "Information theoretic approach to high dimensional multiplicative models: stochastic discount factor and treatment effect," LSE Research Online Documents on Economics 110494, London School of Economics and Political Science, LSE Library.
    19. repec:hum:wpaper:sfb649dp2015-053 is not listed on IDEAS
    20. Holland, Ashley D., 2017. "Penalized spline estimation in the partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 211-235.
    21. Breunig, Christoph & Haan, Peter, 2021. "Nonparametric regression with selectively missing covariates," Journal of Econometrics, Elsevier, vol. 223(1), pages 28-52.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1804.04916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.