IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/30-19.html
   My bibliography  Save this paper

Valid simultaneous inference in high-dimensional settings (with the HDM package for R)

Author

Listed:
  • Philipp Bach

    (Institute for Fiscal Studies)

  • Victor Chernozhukov

    (Institute for Fiscal Studies and MIT)

  • Martin Spindler

    (Institute for Fiscal Studies)

Abstract

Due to the increasing availability of high-dimensional empirical applications in many research disciplines, valid simultaneous inference becomes more and more important. For instance, high-dimensional settings might arise in economic studies due to very rich data sets with many potential covariates or in the analysis of treatment heterogeneities. Also the evaluation of potentially more complicated (non-linear) functional forms of the regression relationship leads to many potential variables for which simultaneous inferential statements might be of interest. Here we provide a review of classical and modern methods for simultaneous inference in (high-dimensional) settings and illustrate their use by a case study using the R package hdm. The R package hdm implements valid joint powerful and e?cient hypothesis tests for a potentially large number of coe?cients as well as the construction of simultaneous con?dence intervals and, therefore, provides useful methods to perform valid post-selection inference based on the LASSO. R and the package hdm are open-source software projects and can be freely downloaded from CRAN: http://cran.r-project.org.

Suggested Citation

  • Philipp Bach & Victor Chernozhukov & Martin Spindler, 2019. "Valid simultaneous inference in high-dimensional settings (with the HDM package for R)," CeMMAP working papers CWP30/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:30/19
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/CW3019_Valid_simultaneous_inference_in_high-dimensional_settings.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. John A. List & Azeem M. Shaikh & Yang Xu, 2019. "Multiple hypothesis testing in experimental economics," Experimental Economics, Springer;Economic Science Association, vol. 22(4), pages 773-793, December.
    2. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2016. "hdm: High-Dimensional Metrics," CeMMAP working papers 37/16, Institute for Fiscal Studies.
    3. A. Belloni & V. Chernozhukov & K. Kato, 2015. "Uniform post-selection inference for least absolute deviation regression and other Z-estimation problems," Biometrika, Biometrika Trust, vol. 102(1), pages 77-94.
    4. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    5. Victor Chernozhukov & Chris Hansen & Martin Spindler, 2016. "High-Dimensional Metrics in R," Papers 1603.01700, arXiv.org, revised Aug 2016.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Helmut Wasserbacher & Martin Spindler, 2024. "Credit Ratings: Heterogeneous Effect on Capital Structure," Papers 2406.18936, arXiv.org.
    2. Victor Chernozhukov & Denis Chetverikov & Kengo Kato & Yuta Koike, 2022. "High-dimensional Data Bootstrap," Papers 2205.09691, arXiv.org.
    3. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    4. Barbara Felderer & Jannis Kueck & Martin Spindler, 2021. "Big Data meets Causal Survey Research: Understanding Nonresponse in the Recruitment of a Mixed-mode Online Panel," Papers 2102.08994, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harold D. Chiang, 2018. "Many Average Partial Effects: with An Application to Text Regression," Papers 1812.09397, arXiv.org, revised Jan 2022.
    2. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    4. Stefan Seifert & Marica Valente, 2018. "An Offer that you Can't Refuse? Agrimafias and Migrant Labor on Vineyards in Southern Italy," Discussion Papers of DIW Berlin 1735, DIW Berlin, German Institute for Economic Research.
    5. Ruben Dezeure & Peter Bühlmann & Cun-Hui Zhang, 2017. "High-dimensional simultaneous inference with the bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 685-719, December.
    6. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers 49/16, Institute for Fiscal Studies.
    7. Huber, Martin & Imhof, David, 2019. "Machine learning with screens for detecting bid-rigging cartels," International Journal of Industrial Organization, Elsevier, vol. 65(C), pages 277-301.
    8. Victor Chernozhukov & Wolfgang K. Hardle & Chen Huang & Weining Wang, 2018. "LASSO-Driven Inference in Time and Space," Papers 1806.05081, arXiv.org, revised May 2020.
    9. Edward I. Altman & Marco Balzano & Alessandro Giannozzi & Stjepan Srhoj, 2023. "Revisiting SME default predictors: The Omega Score," Journal of Small Business Management, Taylor & Francis Journals, vol. 61(6), pages 2383-2417, November.
    10. Victor Chernozhukov & Whitney K Newey & Rahul Singh, 2022. "Debiased machine learning of global and local parameters using regularized Riesz representers [Semiparametric instrumental variable estimation of treatment response models]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 576-601.
    11. Jelena Bradic & Victor Chernozhukov & Whitney K. Newey & Yinchu Zhu, 2019. "Minimax Semiparametric Learning With Approximate Sparsity," Papers 1912.12213, arXiv.org, revised Aug 2022.
    12. Selina Gangl & Martin Huber, 2021. "From homemakers to breadwinners? How mandatory kindergarten affects maternal labour market outcomes," Papers 2111.14524, arXiv.org, revised Mar 2022.
    13. Victor Chernozhukov & Whitney K. Newey & James Robins, 2018. "Double/de-biased machine learning using regularized Riesz representers," CeMMAP working papers CWP15/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    15. Hannes Wallimann & David Imhof & Martin Huber, 2023. "A Machine Learning Approach for Flagging Incomplete Bid-Rigging Cartels," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1669-1720, December.
    16. Gangl, Selina & Huber, Martin, 2021. "From homemakers to breadwinners? How mandatory kindergarten affects maternal labour market attachment," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203636, Verein für Socialpolitik / German Economic Association, revised 2021.
    17. Imhof, David & Wallimann, Hannes, 2021. "Detecting bid-rigging coalitions in different countries and auction formats," International Review of Law and Economics, Elsevier, vol. 68(C).
    18. Elena Denisova-Schmidt & Martin Huber & Elvira Leontyeva & Anna Solovyeva, 2021. "Combining experimental evidence with machine learning to assess anti-corruption educational campaigns among Russian university students," Empirical Economics, Springer, vol. 60(4), pages 1661-1684, April.
    19. Daniels, David P. & Zlatev, Julian J., 2019. "Choice architects reveal a bias toward positivity and certainty," Organizational Behavior and Human Decision Processes, Elsevier, vol. 151(C), pages 132-149.
    20. Yukun Ma, 2023. "Identification-robust inference for the LATE with high-dimensional covariates," Papers 2302.09756, arXiv.org, revised Nov 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:30/19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.