IDEAS home Printed from https://ideas.repec.org/p/huj/dispap/dp626.html
   My bibliography  Save this paper

The Role of First Impression in Operant Learning

Author

Listed:
  • Hanan Shteingart
  • Tal Neiman
  • Yonatan Loewenstein

Abstract

We quantified the effect of first experience on behavior in operant learning and studied its underlying computational principles. To that goal, we analyzed more than 200,000 choices in a repeated-choice experiment. We found that the outcome of the first experience has a substantial and lasting effect on participants' subsequent behavior, which we term outcome primacy. We found that this outcome primacy can account for much of the underweighting of rare events, where participants apparently underestimate small probabilities. We modeled behavior in this task using a standard, model-free reinforcement learning algorithm. In this model, the values of the different actions are learned over time and are used to determine the next action according to a predefined action-selection rule. We used a novel non-parametric method to characterize this action-selection rule and showed that the substantial effect of first experience on behavior is consistent with the reinforcement learning model if we assume that the outcome of first experience resets the values of the experienced actions, but not if we assume arbitrary initial conditions. Moreover, the predictive power of our resetting model outperforms previously published models regarding the aggregate choice behavior. These findings suggest that first experience has a disproportionately large effect on subsequent actions, similar to primacy effects in other fields of cognitive psychology. The mechanism of resetting of the initial conditions which underlies outcome primacy may thus also account for other forms of primacy.

Suggested Citation

  • Hanan Shteingart & Tal Neiman & Yonatan Loewenstein, 2012. "The Role of First Impression in Operant Learning," Discussion Paper Series dp626, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
  • Handle: RePEc:huj:dispap:dp626
    as

    Download full text from publisher

    File URL: http://ratio.huji.ac.il/sites/default/files/publications/dp626.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tal Neiman & Yonatan Loewenstein, 2011. "Reinforcement learning in professional basketball players," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
    2. repec:cup:judgdm:v:1:y:2006:i::p:159-161 is not listed on IDEAS
    3. Ido Erev & Alvin Roth & Robert Slonim & Greg Barron, 2007. "Learning and equilibrium as useful approximations: Accuracy of prediction on randomly selected constant sum games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(1), pages 29-51, October.
    4. Mathias Pessiglione & Ben Seymour & Guillaume Flandin & Raymond J. Dolan & Chris D. Frith, 2006. "Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans," Nature, Nature, vol. 442(7106), pages 1042-1045, August.
    5. Tal Neiman & Yonatan Loewenstein, 2011. "Reinforcement learning in professional basketball players," Discussion Paper Series dp593, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua B. Miller & Adam Sanjurjo, 2015. "Is it a Fallacy to Believe in the Hot Hand in the NBA Three-Point Contest?," Working Papers 548, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    2. Chacoma, Andrés & Billoni, Orlando V., 2023. "Probabilistic model for Padel games dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Ofri Raviv & Merav Ahissar & Yonatan Loewenstein, 2012. "How Recent History Affects Perception: The Normative Approach and Its Heuristic Approximation," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-10, October.
    4. Joshua B. Miller & Adam Sanjurjo, 2014. "A Cold Shower for the Hot Hand Fallacy," Working Papers 518, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    5. Tal Neiman & Yonatan Loewenstein, 2014. "Spatial Generalization in Operant Learning: Lessons from Professional Basketball," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-8, May.
    6. Aloys Prinz, 2019. "Learning (Not) to Evade Taxes," Games, MDPI, vol. 10(4), pages 1-18, September.
    7. Brian Skinner, 2012. "The Problem of Shot Selection in Basketball," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-8, January.
    8. Miller, Joshua B. & Sanjurjo, Adam, 2021. "Is it a fallacy to believe in the hot hand in the NBA three-point contest?," European Economic Review, Elsevier, vol. 138(C).
    9. Ofri Raviv & Merav Ahissar & Yonatan Loewenstein, 2012. "How recent history affects perception: the normative approach and its heuristic approximation," Discussion Paper Series dp628, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    10. Miller, Joshua Benjamin & Sanjurjo, Adam, 2018. "A Visible (Hot) Hand? Expert Players Bet on the Hot Hand and Win," OSF Preprints sd32u, Center for Open Science.
    11. Miller, Joshua Benjamin & Sanjurjo, Adam, 2018. "Is it a Fallacy to Believe in the Hot Hand in the NBA Three-Point Contest?," OSF Preprints dmksp, Center for Open Science.
    12. Tal Neiman & Yonatan Loewenstein, 2014. "Spatial Generalization in Operant Learning: Lessons from Professional Basketball," Discussion Paper Series dp665, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    13. Gianluigi Mongillo & Hanan Shteingart & Yonatan Loewenstein, 2014. "The Misbehavior of Reinforcement Learning," Discussion Paper Series dp661, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    14. Hanan Shteingart & Yonatan Loewenstein, 2014. "Reinforcement Learning and Human Behavior," Discussion Paper Series dp656, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    15. Antoine Collomb-Clerc & Maëlle C. M. Gueguen & Lorella Minotti & Philippe Kahane & Vincent Navarro & Fabrice Bartolomei & Romain Carron & Jean Regis & Stephan Chabardès & Stefano Palminteri & Julien B, 2023. "Human thalamic low-frequency oscillations correlate with expected value and outcomes during reinforcement learning," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Manuel Glauco Carbone & Icro Maremmani, 2024. "Chronic Cocaine Use and Parkinson’s Disease: An Interpretative Model," IJERPH, MDPI, vol. 21(8), pages 1-23, August.
    17. Ofir Yakobi & Doron Cohen & Eitan Naveh & Ido Erev, 2020. "Reliance on small samples and the value of taxing reckless behaviors," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(2), pages 266-281, March.
    18. David Vaquero-Puyuelo & Concepción De-la-Cámara & Beatriz Olaya & Patricia Gracia-García & Antonio Lobo & Raúl López-Antón & Javier Santabárbara, 2021. "Anhedonia as a Potential Risk Factor of Alzheimer’s Disease in a Community-Dwelling Elderly Sample: Results from the ZARADEMP Project," IJERPH, MDPI, vol. 18(4), pages 1-12, February.
    19. Topi Miettinen, 2012. "Paying attention to payoffs in analogy-based learning," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(1), pages 193-222, May.
    20. Robert Östling & Joseph Tao-yi Wang & Eileen Y. Chou & Colin F. Camerer, 2011. "Testing Game Theory in the Field: Swedish LUPI Lottery Games," American Economic Journal: Microeconomics, American Economic Association, vol. 3(3), pages 1-33, August.

    More about this item

    Keywords

    reinforcement learning; operant conditioning; underweighting of rare events; risk aversion; primacy;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:huj:dispap:dp626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael Simkin (email available below). General contact details of provider: https://edirc.repec.org/data/crihuil.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.