IDEAS home Printed from https://ideas.repec.org/p/huj/dispap/dp656.html
   My bibliography  Save this paper

Reinforcement Learning and Human Behavior

Author

Listed:
  • Hanan Shteingart
  • Yonatan Loewenstein

Abstract

The dominant computational approach to model operant learning and its underlying neural activity is model-free reinforcement learning (RL). However, there is accumulating behavioral and neuronal-related evidence that human (and animal) operant learning is far more multifaceted. Theoretical advances in RL, such as hierarchical and model-based RL extend the explanatory power of RL to account for some of these findings. Nevertheless, some other aspects of human behavior remain inexplicable even in the simplest tasks. Here we review developments and remaining challenges in relating RL models to human operant learning. In particular, we emphasize that learning a model of the world is an essential step prior or in parallel to learning the policy in RL and discuss alternative models that directly learn a policy without an explicit world model in terms of state-action pairs.

Suggested Citation

  • Hanan Shteingart & Yonatan Loewenstein, 2014. "Reinforcement Learning and Human Behavior," Discussion Paper Series dp656, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
  • Handle: RePEc:huj:dispap:dp656
    as

    Download full text from publisher

    File URL: http://ratio.huji.ac.il/sites/default/files/publications/dp656.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Legenstein & Niko Wilbert & Laurenz Wiskott, 2010. "Reinforcement Learning on Slow Features of High-Dimensional Input Streams," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-13, August.
    2. Evren C. Tumer & Michael S. Brainard, 2007. "Performance variability enables adaptive plasticity of ‘crystallized’ adult birdsong," Nature, Nature, vol. 450(7173), pages 1240-1244, December.
    3. Johannes Friedrich & Walter Senn, 2012. "Spike-based Decision Learning of Nash Equilibria in Two-Player Games," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-12, September.
    4. P. Read Montague & Steven E. Hyman & Jonathan D. Cohen, 2004. "Computational roles for dopamine in behavioural control," Nature, Nature, vol. 431(7010), pages 760-767, October.
    5. Tal Neiman & Yonatan Loewenstein, 2011. "Reinforcement learning in professional basketball players," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
    6. repec:bla:jecsur:v:14:y:2000:i:1:p:101-18 is not listed on IDEAS
    7. Tal Neiman & Yonatan Loewenstein, 2011. "Reinforcement learning in professional basketball players," Discussion Paper Series dp593, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karthik Kannan & Vandith Pamuru & Yaroslav Rosokha, 2023. "Analyzing Frictions in Generalized Second-Price Auction Markets," Information Systems Research, INFORMS, vol. 34(4), pages 1437-1454, December.
    2. Tal Neiman & Yonatan Loewenstein, 2014. "Spatial Generalization in Operant Learning: Lessons from Professional Basketball," Discussion Paper Series dp665, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    3. Hanan Shteingart & Yonatan Loewenstein, 2016. "Heterogeneous Suppression of Sequential Effects in Random Sequence Generation, but not in Operant Learning," Discussion Paper Series dp701, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    4. Aloys Prinz, 2019. "Learning (Not) to Evade Taxes," Games, MDPI, vol. 10(4), pages 1-18, September.
    5. Gianluigi Mongillo & Hanan Shteingart & Yonatan Loewenstein, 2014. "The Misbehavior of Reinforcement Learning," Discussion Paper Series dp661, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    6. Tal Neiman & Yonatan Loewenstein, 2014. "Spatial Generalization in Operant Learning: Lessons from Professional Basketball," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-8, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluigi Mongillo & Hanan Shteingart & Yonatan Loewenstein, 2014. "The Misbehavior of Reinforcement Learning," Discussion Paper Series dp661, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    2. Joshua B. Miller & Adam Sanjurjo, 2015. "Is it a Fallacy to Believe in the Hot Hand in the NBA Three-Point Contest?," Working Papers 548, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    3. Chacoma, Andrés & Billoni, Orlando V., 2023. "Probabilistic model for Padel games dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Hanan Shteingart & Tal Neiman & Yonatan Loewenstein, 2012. "The Role of First Impression in Operant Learning," Discussion Paper Series dp626, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    5. Ofri Raviv & Merav Ahissar & Yonatan Loewenstein, 2012. "How Recent History Affects Perception: The Normative Approach and Its Heuristic Approximation," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-10, October.
    6. Joshua B. Miller & Adam Sanjurjo, 2014. "A Cold Shower for the Hot Hand Fallacy," Working Papers 518, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    7. Tal Neiman & Yonatan Loewenstein, 2014. "Spatial Generalization in Operant Learning: Lessons from Professional Basketball," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-8, May.
    8. Aloys Prinz, 2019. "Learning (Not) to Evade Taxes," Games, MDPI, vol. 10(4), pages 1-18, September.
    9. Brian Skinner, 2012. "The Problem of Shot Selection in Basketball," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-8, January.
    10. Miller, Joshua B. & Sanjurjo, Adam, 2021. "Is it a fallacy to believe in the hot hand in the NBA three-point contest?," European Economic Review, Elsevier, vol. 138(C).
    11. Ofri Raviv & Merav Ahissar & Yonatan Loewenstein, 2012. "How recent history affects perception: the normative approach and its heuristic approximation," Discussion Paper Series dp628, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    12. Miller, Joshua Benjamin & Sanjurjo, Adam, 2018. "A Visible (Hot) Hand? Expert Players Bet on the Hot Hand and Win," OSF Preprints sd32u, Center for Open Science.
    13. Miller, Joshua Benjamin & Sanjurjo, Adam, 2018. "Is it a Fallacy to Believe in the Hot Hand in the NBA Three-Point Contest?," OSF Preprints dmksp, Center for Open Science.
    14. Tal Neiman & Yonatan Loewenstein, 2014. "Spatial Generalization in Operant Learning: Lessons from Professional Basketball," Discussion Paper Series dp665, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    15. Andreea O Diaconescu & Christoph Mathys & Lilian A E Weber & Jean Daunizeau & Lars Kasper & Ekaterina I Lomakina & Ernst Fehr & Klaas E Stephan, 2014. "Inferring on the Intentions of Others by Hierarchical Bayesian Learning," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-19, September.
    16. Biele, Guido & Rieskamp, Jörg & Krugel, Lea K. & Heekeren, Hauke R., 2011. "The neural basis of following advice," SFB 649 Discussion Papers 2011-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Sravani Kondapavulur & Stefan M. Lemke & David Darevsky & Ling Guo & Preeya Khanna & Karunesh Ganguly, 2022. "Transition from predictable to variable motor cortex and striatal ensemble patterning during behavioral exploration," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    18. Ünsal Özdilek, 2021. "Sensing Happiness in Senseless Information," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 16(5), pages 2059-2084, October.
    19. Fabian Heim & Ezequiel Mendoza & Avani Koparkar & Daniela Vallentin, 2024. "Disinhibition enables vocal repertoire expansion after a critical period," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Burkhard Pleger & Christian C Ruff & Felix Blankenburg & Stefan Klöppel & Jon Driver & Raymond J Dolan, 2009. "Influence of Dopaminergically Mediated Reward on Somatosensory Decision-Making," PLOS Biology, Public Library of Science, vol. 7(7), pages 1-10, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:huj:dispap:dp656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael Simkin (email available below). General contact details of provider: https://edirc.repec.org/data/crihuil.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.