IDEAS home Printed from https://ideas.repec.org/p/huj/dispap/dp527.html
   My bibliography  Save this paper

On Bayesian-Nash Equilibria Satisfying the Condorcet Jury Theorem: The Dependent Case

Author

Listed:
  • Bezalel Peleg
  • Shmuel Zamir

Abstract

We investigate sufficient conditions for the existence of Bayesian-Nash equilibria that satisfy the Condorcet Jury Theorem (CJT). In the Bayesian game Gn among n jurors, we allow for arbitrary distribution on the types of jurors. In particular, any kind of dependency is possible. If each juror i has a constant strategy, h, si (that is, a strategy that is independent of the size n.i of the jury), such that s =(s 1,s 2, . . . ,sn . . .) satisfies theCJT, then byMcLennan (1998) there exists a Bayesian-Nash equilibrium that also satisfies the CJT. We translate the CJT condition on sequences of constant strategies into the following problem: (**) For a given sequence of binary random variables X = (X1,X2, ...,Xn, ...) with joint distribution P, does the distribution P satisfy the asymptotic part of the CJT ? We provide sufficient conditions and two general (distinct) necessary conditions for (**). We give a complete solution to this problem when X is a sequence of exchangeable binary random variables.

Suggested Citation

  • Bezalel Peleg & Shmuel Zamir, 2009. "On Bayesian-Nash Equilibria Satisfying the Condorcet Jury Theorem: The Dependent Case," Discussion Paper Series dp527, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
  • Handle: RePEc:huj:dispap:dp527
    as

    Download full text from publisher

    File URL: http://ratio.huji.ac.il/sites/default/files/publications/dp527.pdf
    Download Restriction: no

    File URL: http://link.springer.com/article/10.1007/s00355-011-0546-1
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ladha, Krishna K., 1995. "Information pooling through majority-rule voting: Condorcet's jury theorem with correlated votes," Journal of Economic Behavior & Organization, Elsevier, vol. 26(3), pages 353-372, May.
    2. Jean-François Laslier & Jörgen Weibull, 2008. "Committee decisions: Optimality and Equilibrium," Working Papers halshs-00121741, HAL.
    3. Roger B. Myerson, 1998. "Population uncertainty and Poisson games," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(3), pages 375-392.
    4. Franz Dietrich & Christian List, 2002. "A Model of Jury Decisions Where All Jurors Have the Same Evidence," Economics Papers 2002-W23, Economics Group, Nuffield College, University of Oxford.
    5. Mueller,Dennis C. (ed.), 1997. "Perspectives on Public Choice," Cambridge Books, Cambridge University Press, number 9780521553773.
    6. Dietrich, F.K., 2008. "The premises of condorcet's jury theorem are not simultaneously justified," Research Memorandum 012, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    7. Myerson, Roger B., 1998. "Extended Poisson Games and the Condorcet Jury Theorem," Games and Economic Behavior, Elsevier, vol. 25(1), pages 111-131, October.
    8. Daniel Berend & Jacob Paroush, 1998. "When is Condorcet's Jury Theorem valid?," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 15(4), pages 481-488.
    9. Berg, Sven, 1993. "Condorcet's jury theorem revisited," European Journal of Political Economy, Elsevier, vol. 9(3), pages 437-446, August.
    10. Nitzan, Shmuel & Paroush, Jacob, 1982. "Optimal Decision Rules in Uncertain Dichotomous Choice Situations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 23(2), pages 289-297, June.
    11. Austen-Smith, David & Banks, Jeffrey S., 1996. "Information Aggregation, Rationality, and the Condorcet Jury Theorem," American Political Science Review, Cambridge University Press, vol. 90(1), pages 34-45, March.
    12. Duggan, John & Martinelli, Cesar, 2001. "A Bayesian Model of Voting in Juries," Games and Economic Behavior, Elsevier, vol. 37(2), pages 259-294, November.
    13. McLennan, Andrew, 1998. "Consequences of the Condorcet Jury Theorem for Beneficial Information Aggregation by Rational Agents," American Political Science Review, Cambridge University Press, vol. 92(2), pages 413-418, June.
    14. Wit, Jorgen, 1998. "Rational Choice and the Condorcet Jury Theorem," Games and Economic Behavior, Elsevier, vol. 22(2), pages 364-376, February.
    15. Daniel Berend & Luba Sapir, 2007. "Monotonicity in Condorcet’s Jury Theorem with dependent voters," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(3), pages 507-528, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bezalel Peleg & Shmuel Zamir, 2012. "Extending the Condorcet Jury Theorem to a general dependent jury," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(1), pages 91-125, June.
    2. Bezalel Peleg & Shmuel Zamir, 2008. "Condorcet Jury Theorem: The Dependent Case," Levine's Working Paper Archive 122247000000002422, David K. Levine.
    3. Alexander Lundberg, 2020. "The importance of expertise in group decisions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 55(3), pages 495-521, October.
    4. Hummel, Patrick, 2011. "Information aggregation in multicandidate elections under plurality rule and runoff voting," Mathematical Social Sciences, Elsevier, vol. 62(1), pages 1-6, July.
    5. Ruth Ben-Yashar, 2006. "Information is important to Condorcet jurors," Public Choice, Springer, vol. 127(3), pages 305-319, June.
    6. Patrick Hummel, 2012. "Deliberation in large juries with diverse preferences," Public Choice, Springer, vol. 150(3), pages 595-608, March.
    7. Pivato, Marcus, 2017. "Epistemic democracy with correlated voters," Journal of Mathematical Economics, Elsevier, vol. 72(C), pages 51-69.
    8. Ruth Ben-Yashar & Igal Milchtaich, 2003. "First and Second Best Voting Rules in Committees," Working Papers 2003-08, Bar-Ilan University, Department of Economics.
    9. Adam Meirowitz, 2007. "In Defense of Exclusionary Deliberation: Communication and Voting with Private Beliefs and Values," Journal of Theoretical Politics, , vol. 19(3), pages 301-327, July.
    10. Jerome Mathis, 2006. "Deliberation with Partially Verifiable Information," THEMA Working Papers 2006-03, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    11. Ekmekci, Mehmet & Lauermann, Stephan, 2022. "Information aggregation in Poisson-elections," Theoretical Economics, Econometric Society, vol. 17(1), January.
    12. Sourav Bhattacharya, 2006. "Preference Monotonicity and Information Aggregation in Elections," Working Paper 325, Department of Economics, University of Pittsburgh, revised Dec 2008.
    13. Sapir, Luba, 2005. "Generalized means of jurors' competencies and marginal changes of jury's size," Mathematical Social Sciences, Elsevier, vol. 50(1), pages 83-101, July.
    14. Meirowitz, Adam, 2004. "In Defense of Exclusionary Deliberation: Communication and Voting with Private Beliefs and Values," Papers 04-06-2004, Princeton University, Research Program in Political Economy.
    15. Ruth Ben-Yashar & Shmuel Nitzan, 2017. "Is diversity in capabilities desirable when adding decision makers?," Theory and Decision, Springer, vol. 82(3), pages 395-402, March.
    16. Eyal Baharad & Jacob Goldberger & Moshe Koppel & Shmuel Nitzan, 2012. "Beyond Condorcet: optimal aggregation rules using voting records," Theory and Decision, Springer, vol. 72(1), pages 113-130, January.
    17. Paolo Balduzzi & Clara Graziano & Annalisa Luporini, 2014. "Voting in small committees," Journal of Economics, Springer, vol. 111(1), pages 69-95, February.
    18. Venturini, Andrea, 2015. "Strategic Voting with Almost Perfect Signals," MPRA Paper 71216, University Library of Munich, Germany.
    19. J. Goertz, 2014. "Inefficient committees: small elections with three alternatives," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 43(2), pages 357-375, August.
    20. Duggan, John & Martinelli, Cesar, 2001. "A Bayesian Model of Voting in Juries," Games and Economic Behavior, Elsevier, vol. 37(2), pages 259-294, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:huj:dispap:dp527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael Simkin (email available below). General contact details of provider: https://edirc.repec.org/data/crihuil.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.