IDEAS home Printed from https://ideas.repec.org/p/hkm/wpaper/042017.html
   My bibliography  Save this paper

Exchange Rate Movements and Fundamentals: Impact of Oil Prices and China¡¯s Growth

Author

Listed:
  • Shuo Cao

    (Shenzhen Stock Exchange)

  • Hongyi Chen

    (Hong Kong Institute for Monetary Research)

Abstract

This paper identifies five factors that can capture 95% of the variance across 39 US dollar exchange rates based on the principal component method. A time-varying parameter factor-augmented vector autoregressive (TVP-FAVAR) model is used to analyze the determinants of movements in these exchange rates, revealing that impact of global oil prices and China¡¯s growth has increased significantly since 2008. In particular, shocks to these two fundamentals drive the movements of both commodity and non-commodity currencies recently. The impact of monetary policy shocks on the currency pairs is comparatively small.

Suggested Citation

  • Shuo Cao & Hongyi Chen, 2017. "Exchange Rate Movements and Fundamentals: Impact of Oil Prices and China¡¯s Growth," Working Papers 042017, Hong Kong Institute for Monetary Research.
  • Handle: RePEc:hkm:wpaper:042017
    as

    Download full text from publisher

    File URL: http://www.hkimr.org/uploads/publication/458/wp201704.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles Engel & Kenneth D. West, 2005. "Exchange Rates and Fundamentals," Journal of Political Economy, University of Chicago Press, vol. 113(3), pages 485-517, June.
    2. Yu-Chin Chen & Kenneth S. Rogoff & Barbara Rossi, 2010. "Can Exchange Rates Forecast Commodity Prices?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(3), pages 1145-1194.
    3. Jing Cynthia Wu & Fan Dora Xia, 2016. "Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(2-3), pages 253-291, March.
    4. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    5. Anna Pavlova & Roberto Rigobon, 2007. "Asset Prices and Exchange Rates," The Review of Financial Studies, Society for Financial Studies, vol. 20(4), pages 1139-1180.
    6. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    7. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    8. Libo Yin & Liyan Han, 2016. "Macroeconomic impacts on commodity prices: China vs. the United States," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 489-500, March.
    9. Hummels, David, 2011. "Robert C. Feenstra and Shang-Jin Wei, Editors, China's Growing Role in World Trade, The University of Chicago Press (2010)," Journal of International Economics, Elsevier, vol. 83(1), pages 92-93, January.
    10. Chang, Yoosoon & Isaac Miller, J. & Park, Joon Y., 2009. "Extracting a common stochastic trend: Theory with some applications," Journal of Econometrics, Elsevier, vol. 150(2), pages 231-247, June.
    11. Sarno, Lucio & Valente, Giorgio, 2005. "Empirical exchange rate models and currency risk: some evidence from density forecasts," Journal of International Money and Finance, Elsevier, vol. 24(2), pages 363-385, March.
    12. Ryan Greenaway‐McGrevy & Nelson C. Mark & Donggyu Sul & Jyh‐Lin Wu, 2018. "Identifying Exchange Rate Common Factors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(4), pages 2193-2218, November.
    13. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Hongyi & Cao, Shuo, 2019. "Exchange Rate Movements and Fundamentals: Impact of Oil Prices and the People’s Republic of China’s Growth," ADBI Working Papers 938, Asian Development Bank Institute.
    2. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    3. Wenting Liao & Jun Ma & Chengsi Zhang, 2023. "Identifying exchange rate effects and spillovers of US monetary policy shocks in the presence of time‐varying instrument relevance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(7), pages 989-1006, November.
    4. Libo Yin & Liyan Han, 2016. "Macroeconomic impacts on commodity prices: China vs. the United States," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 489-500, March.
    5. Krystian Jaworski, 2021. "Forecasting exchange rates for Central and Eastern European currencies using country‐specific factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 977-999, September.
    6. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    7. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
    8. Jan J. J. Groen & Paolo A. Pesenti, 2011. "Commodity Prices, Commodity Currencies, and Global Economic Developments," NBER Chapters, in: Commodity Prices and Markets, pages 15-42, National Bureau of Economic Research, Inc.
    9. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2014. "Forecasting with factor-augmented error correction models," International Journal of Forecasting, Elsevier, vol. 30(3), pages 589-612.
    10. repec:dau:papers:123456789/11663 is not listed on IDEAS
    11. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    12. Jo, Soojin & Karnizova, Lilia & Reza, Abeer, 2019. "Industry effects of oil price shocks: A re-examination," Energy Economics, Elsevier, vol. 82(C), pages 179-190.
    13. Shiu-Sheng Chen, 2016. "Commodity prices and related equity prices," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 949-967, August.
    14. Krzysztof Drachal, 2022. "Forecasting the Crude Oil Spot Price with Bayesian Symbolic Regression," Energies, MDPI, vol. 16(1), pages 1-29, December.
    15. Gil-Alana, Luis A. & Gupta, Rangan & Olubusoye, Olusanya E. & Yaya, OlaOluwa S., 2016. "Time series analysis of persistence in crude oil price volatility across bull and bear regimes," Energy, Elsevier, vol. 109(C), pages 29-37.
    16. Matteo Luciani, 2015. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.
    17. Zhang, Hui Jun & Dufour, Jean-Marie & Galbraith, John W., 2016. "Exchange rates and commodity prices: Measuring causality at multiple horizons," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 100-120.
    18. Shahriyar Aliyev & Evžen Kočenda, 2023. "ECB monetary policy and commodity prices," Review of International Economics, Wiley Blackwell, vol. 31(1), pages 274-304, February.
    19. Simona Delle Chiaie & Laurent Ferrara & Domenico Giannone, 2022. "Common factors of commodity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 461-476, April.
    20. Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2022. "The illusion of oil return predictability: The choice of data matters!," Journal of Banking & Finance, Elsevier, vol. 134(C).
    21. Sumudu W. Watugala, 2015. "Economic Uncertainty and Commodity Futures Volatility," Working Papers 15-14, Office of Financial Research, US Department of the Treasury.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hkm:wpaper:042017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: HKIMR (email available below). General contact details of provider: https://edirc.repec.org/data/hkimrhk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.