IDEAS home Printed from https://ideas.repec.org/p/hig/wpaper/59-fe-2017.html
   My bibliography  Save this paper

Boundedness of the Value Function of the Worst-Case Portfolio Selection Problem with Linear Constraints

Author

Listed:
  • Nikolay A Andreev

    (National Research University Higher School of Economics)

Abstract

We study the boundedness properties of the value function for a general worst-case scenario stochastic dynamic programming problem. For the portfolio selection problem,we present sufficient economically reasonable conditions for the finitness and uniform boundedness of the value function. The results can be used to decide if the problem is ill-posed and to correctly solve the Bellman-Isaacs equation with an appropriate numeric scheme

Suggested Citation

  • Nikolay A Andreev, 2017. "Boundedness of the Value Function of the Worst-Case Portfolio Selection Problem with Linear Constraints," HSE Working papers WP BRP 59/FE/2017, National Research University Higher School of Economics.
  • Handle: RePEc:hig:wpaper:59/fe/2017
    as

    Download full text from publisher

    File URL: https://wp.hse.ru/data/2017/01/25/1113619812/59FE2017.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vathana Ly Vath & Mohamed Mnif & Huyên Pham, 2007. "A model of optimal portfolio selection under liquidity risk and price impact," Finance and Stochastics, Springer, vol. 11(1), pages 51-90, January.
    2. Jim Gatheral, 2010. "No-dynamic-arbitrage and market impact," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 749-759.
    3. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    4. Deng, Xiao-Tie & Li, Zhong-Fei & Wang, Shou-Yang, 2005. "A minimax portfolio selection strategy with equilibrium," European Journal of Operational Research, Elsevier, vol. 166(1), pages 278-292, October.
    5. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    6. Nikolay A. Andreev, 2015. "Worst-Case Approach To Strategic Optimal Portfolio Selection Under Transaction Costs And Trading Limits," HSE Working papers WP BRP 45/FE/2015, National Research University Higher School of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolay A. Andreev, 2015. "Worst-Case Approach To Strategic Optimal Portfolio Selection Under Transaction Costs And Trading Limits," HSE Working papers WP BRP 45/FE/2015, National Research University Higher School of Economics.
    2. Nikolay Andreev, 2019. "Robust Portfolio Optimization in an Illiquid Market in Discrete-Time," Mathematics, MDPI, vol. 7(12), pages 1-16, November.
    3. Villena, Marcelo J. & Reus, Lorenzo, 2016. "On the strategic behavior of large investors: A mean-variance portfolio approach," European Journal of Operational Research, Elsevier, vol. 254(2), pages 679-688.
    4. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2016. "Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach," Papers 1610.07694, arXiv.org, revised Jun 2019.
    5. Miguel, Víctor de & Nogales, Francisco J., 2013. "Multiperiod portfolio selection with transaction and market-impact costs," DES - Working Papers. Statistics and Econometrics. WS ws131615, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Stefano Baccarin & Daniele Marazzina, 2013. "Portfolio Optimization over a Finite Horizon with Fixed and Proportional Transaction Costs and Liquidity Constraints," Working papers 017, Department of Economics, Social Studies, Applied Mathematics and Statistics (Dipartimento di Scienze Economico-Sociali e Matematico-Statistiche), University of Torino.
    7. Dokuchaev, Nikolai, 2010. "Optimality of myopic strategies for multi-stock discrete time market with management costs," European Journal of Operational Research, Elsevier, vol. 200(2), pages 551-556, January.
    8. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    9. Jan Kallsen & Johannes Muhle-Karbe, 2013. "The General Structure of Optimal Investment and Consumption with Small Transaction Costs," Papers 1303.3148, arXiv.org, revised May 2015.
    10. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    11. Min Dai & Zuo Quan Xu & Xun Yu Zhou, 2009. "Continuous-Time Markowitz's Model with Transaction Costs," Papers 0906.0678, arXiv.org.
    12. Xinfu Chen & Min Dai & Wei Jiang & Cong Qin, 2022. "Asymptotic analysis of long‐term investment with two illiquid and correlated assets," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1133-1169, October.
    13. Jean-Pierre Fouque & Ruimeng Hu & Ronnie Sircar, 2021. "Sub- and Super-solution Approach to Accuracy Analysis of Portfolio Optimization Asymptotics in Multiscale Stochastic Factor Market," Papers 2106.11510, arXiv.org, revised Oct 2021.
    14. Ali Al-Aradi & Sebastian Jaimungal, 2018. "Outperformance and Tracking: Dynamic Asset Allocation for Active and Passive Portfolio Management," Papers 1803.05819, arXiv.org, revised Jul 2018.
    15. Baojun Bian & Xinfu Chen & Min Dai & Shuaijie Qian, 2021. "Penalty method for portfolio selection with capital gains tax," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 1013-1055, July.
    16. Dai, Min & Wang, Hefei & Yang, Zhou, 2012. "Leverage management in a bull–bear switching market," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1585-1599.
    17. Kerstin Dächert & Ria Grindel & Elisabeth Leoff & Jonas Mahnkopp & Florian Schirra & Jörg Wenzel, 2022. "Multicriteria asset allocation in practice," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 349-373, June.
    18. Zuo Quan Xu & Fahuai Yi, 2014. "An Optimal Consumption-Investment Model with Constraint on Consumption," Papers 1404.7698, arXiv.org.
    19. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    20. Jin Hyuk Choi & Tae Ung Gang, 2021. "Optimal investment in illiquid market with search frictions and transaction costs," Papers 2101.09936, arXiv.org, revised Aug 2021.

    More about this item

    Keywords

    portfolio selection; Bellman-Isaacs equation; stochastic dynamic programming; value function; worst-case optimization;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hig:wpaper:59/fe/2017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Shamil Abdulaev or Shamil Abdulaev (email available below). General contact details of provider: https://edirc.repec.org/data/hsecoru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.