A Corrected Value-at-Risk Predictor
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hartz, Christoph & Mittnik, Stefan & Paolella, Marc, 2006. "Accurate value-at-risk forecasting based on the normal-GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2295-2312, December.
- Hang Chan, Ngai & Deng, Shi-Jie & Peng, Liang & Xia, Zhendong, 2007. "Interval estimation of value-at-risk based on GARCH models with heavy-tailed innovations," Journal of Econometrics, Elsevier, vol. 137(2), pages 556-576, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Christophe Hurlin & Sébastien Laurent & Rogier Quaedvlieg & Stephan Smeekes, 2017.
"Risk Measure Inference,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 499-512, October.
- Christophe Hurlin & Sebastien Laurent & Rogier Quaedvlieg & Stephan Smeekes, 2015. "Risk Measure Inference," Working Papers halshs-00877279, HAL.
- Christophe Hurlin & Sébastien Laurent & Rogier Quaedvlieg & Stephan Smeekes, 2017. "Risk Measure Inference," Post-Print hal-01457393, HAL.
- Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
- Nieto, María Rosa, 2010. "Bootstrap prediction intervals for VaR and ES in the context of GARCH models," DES - Working Papers. Statistics and Econometrics. WS ws102814, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014.
"Risk models-at-risk,"
Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
- Christophe Boucher & Jon Danielsson & Patrick Kouontchou & Bertrand Maillet, 2014. "Risk models-at-risk," Post-Print hal-02312332, HAL.
- Boucher, Christophe M. & Danielsson, Jon & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models–at–risk," LSE Research Online Documents on Economics 59299, London School of Economics and Political Science, LSE Library.
- Christophe Boucher & Jón Daníelsson & Patrick Kouontchou & Bertrand Maillet, 2014. "Risk models-at-risk," Post-Print hal-01243413, HAL.
- Christophe Boucher & Jon Danielsson & Patrick Kouontchou & Bertrand Maillet, 2014. "Risk Model-at-Risk," Post-Print hal-01386003, HAL.
- Köksal, Bülent & Orhan, Mehmet, 2012. "Market risk of developed and developing countries during the global financial crisis," MPRA Paper 37523, University Library of Munich, Germany.
- Carl Lonnbark, 2010. "A corrected Value-at-Risk predictor," Applied Economics Letters, Taylor & Francis Journals, vol. 17(12), pages 1193-1196.
- Dilip Kumar & S. Maheswaran, 2013. "Return, Volatility and Risk Spillover from Oil Prices and the US Dollar Exchange Rate to the Indian Industrial Sectors," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 7(1), pages 61-91, February.
- Fan, Ying & Zhang, Yue-Jun & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Estimating 'Value at Risk' of crude oil price and its spillover effect using the GED-GARCH approach," Energy Economics, Elsevier, vol. 30(6), pages 3156-3171, November.
- Virta, Joni & Lietzén, Niko & Viitasaari, Lauri & Ilmonen, Pauliina, 2024. "Latent model extreme value index estimation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
- Weronika Ormaniec & Marcin Pitera & Sajad Safarveisi & Thorsten Schmidt, 2022. "Estimating value at risk: LSTM vs. GARCH," Papers 2207.10539, arXiv.org.
- Carol Alexander & Jose Maria Sarabia, 2010. "Endogenizing Model Risk to Quantile Estimates," ICMA Centre Discussion Papers in Finance icma-dp2010-07, Henley Business School, University of Reading.
- Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011.
"Evaluating Value-at-Risk Models via Quantile Regression,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.
- Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
- Gaglianone, Wagner Piazza & Linton, Oliver & Lima, Luiz Renato Regis de Oliveira, 2008. "Evaluating Value-at-Risk models via Quantile regressions," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 679, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel Smith, 2010. "Evaluating Value-at-Risk Models via Quantile Regression," NCER Working Paper Series 67, National Centre for Econometric Research.
- Wagner P. Gaglianone & Luiz Renato Lima & Oliver Linton, 2008. "Evaluating Value-at-Risk Models via Quantile Regressions," Working Papers Series 161, Central Bank of Brazil, Research Department.
- Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel, 2009. "Evaluating Value-at-Risk models via Quantile Regression," UC3M Working papers. Economics we094625, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Marius Lux & Wolfgang Karl Härdle & Stefan Lessmann, 2020.
"Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid,"
Computational Statistics, Springer, vol. 35(3), pages 947-981, September.
- Lux, Marius & Härdle, Wolfgang Karl & Lessmann, Stefan, 2018. "Data Driven Value-at-Risk Forecasting using a SVR-GARCH-KDE Hybrid," IRTG 1792 Discussion Papers 2018-001, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Meriem Rjiba & Michail Tsagris & Hedi Mhalla, 2015.
"Bootstrap for Value at Risk Prediction,"
International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(6), pages 362-371.
- Meriem Rjiba, Meriem & Tsagris, Michail & Mhalla, Hedi, 2015. "Bootstrap for Value at Risk Prediction," MPRA Paper 68842, University Library of Munich, Germany.
- Sun, Shuxiao & Hua, Shengya & Liu, Zhongyi, 2024. "Navigating default risk in supply chain finance: Guidelines based on trade credit and equity vendor financing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
- Hoga, Yannick, 2021. "The uncertainty in extreme risk forecasts from covariate-augmented volatility models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 675-686.
- Fresoli, Diego E. & Ruiz, Esther, 2016.
"The uncertainty of conditional returns, volatilities and correlations in DCC models,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 170-185.
- Fresoli, Diego Eduardo, 2014. "The uncertainty of conditional returns, volatilities and correlations in DCC models," DES - Working Papers. Statistics and Econometrics. WS ws140202, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Timo Dimitriadis & Yannick Hoga, 2022. "Dynamic CoVaR Modeling," Papers 2206.14275, arXiv.org, revised Feb 2024.
- Qiu, Zhiguo & Lazar, Emese & Nakata, Keiichi, 2024. "VaR and ES forecasting via recurrent neural network-based stateful models," International Review of Financial Analysis, Elsevier, vol. 92(C).
More about this item
Keywords
Estimation Error; Finance; Garch; Prediction; Risk Management;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2008-04-15 (Econometrics)
- NEP-RMG-2008-04-15 (Risk Management)
- NEP-UPT-2008-04-15 (Utility Models and Prospect Theory)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:umnees:0734. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Skog (email available below). General contact details of provider: https://edirc.repec.org/data/inumuse.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.