IDEAS home Printed from https://ideas.repec.org/p/hhs/sunrpe/2010_0010.html
   My bibliography  Save this paper

Are Inflation Forecasts from Major Swedish Forecasters Biased?

Author

Listed:
  • Lundholm, Michael

    (Dept. of Economics, Stockholm University)

Abstract

Inflation forecasts made 1999-2005 by Sveriges Riksbank and Konjunkturinstitet of Swedish inflation rates 1999-2007 are tested for unbiasedness; i.e., are the mean forecast errors zero? The bias is in the order of -0.1 percentage units for horizons below one year and in the order of 0.1 and 0.6 (depending on inflation measure) above one year. Using the maximum entropy bootstrap for inference bias is significant whereas inference using HAC indicates insignificance.

Suggested Citation

  • Lundholm, Michael, 2010. "Are Inflation Forecasts from Major Swedish Forecasters Biased?," Research Papers in Economics 2010:10, Stockholm University, Department of Economics.
  • Handle: RePEc:hhs:sunrpe:2010_0010
    as

    Download full text from publisher

    File URL: http://www2.ne.su.se/paper/wp10_10.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:bla:intfin:v:6:y:2003:i:3:p:349-80 is not listed on IDEAS
    2. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    3. Holden, K & Peel, D A, 1990. "On Testing for Unbiasedness and Efficiency of Forecasts," The Manchester School of Economic & Social Studies, University of Manchester, vol. 58(2), pages 120-127, June.
    4. Per Jansson & Anders Vredin, 2003. "Forecast‐Based Monetary Policy: The Case of Sweden," International Finance, Wiley Blackwell, vol. 6(3), pages 349-380, November.
    5. Vinod, Hrishikesh D., 2006. "Maximum entropy ensembles for time series inference in economics," Journal of Asian Economics, Elsevier, vol. 17(6), pages 955-978, December.
    6. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter, Eckley, 2015. "(Non)rationality of consumer inflation perceptions," MPRA Paper 77082, University Library of Munich, Germany.
    2. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    3. Anders Johansson, 2009. "An analysis of dynamic risk in the Greater China equity markets," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 7(3), pages 299-320.
    4. Lahiri, Kajal & Peng, Huaming & Zhao, Yongchen, 2015. "Testing the value of probability forecasts for calibrated combining," International Journal of Forecasting, Elsevier, vol. 31(1), pages 113-129.
    5. Geoffrey Booth, G. & Ciner, Cetin, 1997. "International transmission on information in corn futures markets," Journal of Multinational Financial Management, Elsevier, vol. 7(3), pages 175-187, October.
    6. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    7. Ekaterini Panopoulou, 2005. "A Resolution of the Fisher Effect Puzzle: A Comparison of Estimators," Money Macro and Finance (MMF) Research Group Conference 2005 18, Money Macro and Finance Research Group.
    8. Lüders, Erik & Lüders-Amann, Inge & Schröder, Michael, 2004. "The Power Law and Dividend Yields," ZEW Discussion Papers 04-51, ZEW - Leibniz Centre for European Economic Research.
    9. Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.
    10. Bampinas, Georgios & Panagiotidis, Theodore, 2016. "Hedging inflation with individual US stocks: A long-run portfolio analysis," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 374-392.
    11. repec:wsr:wpaper:y:2010:i:057 is not listed on IDEAS
    12. Wouter J. Den Haan & Andrew T. Levin, 1995. "Inferences from parametric and non-parametric covariance matrix estimation procedures," International Finance Discussion Papers 504, Board of Governors of the Federal Reserve System (U.S.).
    13. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    14. Amélie Charles & Olivier Darné & Laurent Ferrara, 2018. "Does The Great Recession Imply The End Of The Great Moderation? International Evidence," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 745-760, April.
    15. Reus, Lorenzo & Carrasco, José A. & Pincheira, Pablo, 2020. "Do it with a smile: Forecasting volatility with currency options," Finance Research Letters, Elsevier, vol. 34(C).
    16. Nikolay Gospodinov & Ian Irvine, 2005. "A ‘long march’ perspective on tobacco use in Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(2), pages 366-393, May.
    17. Yamamoto, Ryuichi & Hirata, Hideaki, 2013. "Strategy switching in the Japanese stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 37(10), pages 2010-2022.
    18. Carlo A. Favero & Alessandro Melone, 2019. "Asset Pricing vs Asset Expected Returning in Factor Models," Working Papers 651, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    19. Chen, Li & Gao, Jiti & Vahid, Farshid, 2022. "Global temperatures and greenhouse gases: A common features approach," Journal of Econometrics, Elsevier, vol. 230(2), pages 240-254.
    20. Pincheira, Pablo & Hardy, Nicolás, 2021. "Forecasting aluminum prices with commodity currencies," Resources Policy, Elsevier, vol. 73(C).
    21. Caldara, Dario & Cavallo, Michele & Iacoviello, Matteo, 2019. "Oil price elasticities and oil price fluctuations," Journal of Monetary Economics, Elsevier, vol. 103(C), pages 1-20.

    More about this item

    Keywords

    Forecast evaluation; inflation; unbiasedness; maximum entropy bootstrap;
    All these keywords.

    JEL classification:

    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:sunrpe:2010_0010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anne Jensen (email available below). General contact details of provider: https://edirc.repec.org/data/neisuse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.