IDEAS home Printed from https://ideas.repec.org/p/hhs/sdueko/2016_001.html
   My bibliography  Save this paper

An Adaptive Large Neighbourhood Search Procedure Applied to the Dynamic Patient Admission Scheduling Problem

Author

Listed:
  • Lusby, Richard Martin

    (Department of Engineering Management)

  • Schwierz, Martin

    (AMCS)

  • Range, Troels Martin

    (Department of Business and Economics)

  • Larsen, Jesper

    (Department of Engineering Management)

Abstract

The Patient Admission Scheduling problem involves assigning a set of patients to hospital beds over a given time horizon in such a way that several quality measures reflecting patient comfort, treatment efficiency, and hospital utilization are maximized. Usually it is assumed that all information regarding each patient is known in advance, making it possible to solve a static, offline planning problem. Such an approach, however, often has shortcomings in practice given the dynamic setting in which hospitals operate. An extension of this problem, known as the Dynamic patient Admission Scheduling problem, better reflects reality by attempting to capture, among other things, uncertainty in the length of patient stays as well as the ability to consider emergency patients. In this paper we devise an Adaptive Large Neighbourhood Search procedure, utilizing a Simulated Annealing framework, for this new variant of the problem and test its performance on a set of 450 publicly available problem instances of different size. A comparison with the current state-of-the-art indicates that the proposed methodology provides solutions that are of comparable quality for small and medium sized instances, but in a much shorter time frame. For larger instances the improvement in solution quality is dramatic, approximately 3-14% on average. In such cases, it does, however, take slightly longer.

Suggested Citation

  • Lusby, Richard Martin & Schwierz, Martin & Range, Troels Martin & Larsen, Jesper, 2016. "An Adaptive Large Neighbourhood Search Procedure Applied to the Dynamic Patient Admission Scheduling Problem," Discussion Papers on Economics 1/2016, University of Southern Denmark, Department of Economics.
  • Handle: RePEc:hhs:sdueko:2016_001
    as

    Download full text from publisher

    File URL: http://www.sdu.dk/-/media/files/om_sdu/institutter/ivoe/disc_papers/disc_2016/dpbe1_2016.pdf?la=da
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    2. Kusters, Rob J. & Groot, Petra M. A., 1996. "Modelling resource availability in general hospitals design and implementation of a decision support model," European Journal of Operational Research, Elsevier, vol. 88(3), pages 428-445, February.
    3. Range, Troels Martin & Lusby, Richard Martin & Larsen, Jesper, 2014. "A column generation approach for solving the patient admission scheduling problem," European Journal of Operational Research, Elsevier, vol. 235(1), pages 252-264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guido, Rosita & Groccia, Maria Carmela & Conforti, Domenico, 2018. "An efficient matheuristic for offline patient-to-bed assignment problems," European Journal of Operational Research, Elsevier, vol. 268(2), pages 486-503.
    2. TURKEŠ, Renata & SÖRENSEN, Kenneth & HVATTUM, Lars Magnus & BARRENA, Eva & CHENTLI, Hayet & COELHO, Leandro & DAYARIAN, Iman & GRIMAULT, Axel & GULLHAVE, Anders & IRIS, Çagatay & KESKIN, Merve & KIEFE, 2019. "Meta-analysis of metaheuristics: Quantifying the effect of adaptiveness in adaptive large neighborhood search," Working Papers 2019002, University of Antwerp, Faculty of Business and Economics.
    3. Guo, Fang & Zhang, Jingjing & Huang, Zhihong & Huang, Weilai, 2022. "Simultaneous charging station location-routing problem for electric vehicles: Effect of nonlinear partial charging and battery degradation," Energy, Elsevier, vol. 250(C).
    4. Liu, Haichao & Wang, Yang & Hao, Jin-Kao, 2024. "Solving the patient admission scheduling problem using constraint aggregation," European Journal of Operational Research, Elsevier, vol. 316(1), pages 85-99.
    5. Jun, Sungbum & Lee, Seokcheon & Yih, Yuehwern, 2021. "Pickup and delivery problem with recharging for material handling systems utilising autonomous mobile robots," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1153-1168.
    6. Sina Rastani & Bülent Çatay, 2023. "A large neighborhood search-based matheuristic for the load-dependent electric vehicle routing problem with time windows," Annals of Operations Research, Springer, vol. 324(1), pages 761-793, May.
    7. Turkeš, Renata & Sörensen, Kenneth & Hvattum, Lars Magnus, 2021. "Meta-analysis of metaheuristics: Quantifying the effect of adaptiveness in adaptive large neighborhood search," European Journal of Operational Research, Elsevier, vol. 292(2), pages 423-442.
    8. Seokgi Lee & Mona Issabakhsh & Hyun Woo Jeon & Seong Wook Hwang & Byung Chung, 2020. "Idle time and capacity control for a single machine scheduling problem with dynamic electricity pricing," Operations Management Research, Springer, vol. 13(3), pages 197-217, December.
    9. Farid Momayezi & S. Kamal Chaharsooghi & Mohammad Mehdi Sepehri & Ali Husseinzadeh Kashan, 2021. "The capacitated modular single-allocation hub location problem with possibilities of hubs disruptions: modeling and a solution algorithm," Operational Research, Springer, vol. 21(1), pages 139-166, March.
    10. Fabian Schäfer & Manuel Walther & Dominik G. Grimm & Alexander Hübner, 2023. "Combining machine learning and optimization for the operational patient-bed assignment problem," Health Care Management Science, Springer, vol. 26(4), pages 785-806, December.
    11. Perumal, Shyam S.G. & Larsen, Jesper & Lusby, Richard M. & Riis, Morten & Sørensen, Kasper S., 2019. "A matheuristic for the driver scheduling problem with staff cars," European Journal of Operational Research, Elsevier, vol. 275(1), pages 280-294.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido, Rosita & Groccia, Maria Carmela & Conforti, Domenico, 2018. "An efficient matheuristic for offline patient-to-bed assignment problems," European Journal of Operational Research, Elsevier, vol. 268(2), pages 486-503.
    2. Bastos, Leonardo S.L. & Marchesi, Janaina F. & Hamacher, Silvio & Fleck, Julia L., 2019. "A mixed integer programming approach to the patient admission scheduling problem," European Journal of Operational Research, Elsevier, vol. 273(3), pages 831-840.
    3. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    4. Bach, Lukas & Hasle, Geir & Schulz, Christian, 2019. "Adaptive Large Neighborhood Search on the Graphics Processing Unit," European Journal of Operational Research, Elsevier, vol. 275(1), pages 53-66.
    5. Vissers, Jan M.H. & Adan, Ivo J.B.F. & Dellaert, Nico P., 2007. "Developing a platform for comparison of hospital admission systems: An illustration," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1290-1301, August.
    6. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    7. Martins, Sara & Ostermeier, Manuel & Amorim, Pedro & Hübner, Alexander & Almada-Lobo, Bernardo, 2019. "Product-oriented time window assignment for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 893-909.
    8. Dessouky, Maged M & Shao, Yihuan E, 2017. "Routing Strategies for Efficient Deployment of Alternative Fuel Vehicles for Freight Delivery," Institute of Transportation Studies, Working Paper Series qt0nj024qn, Institute of Transportation Studies, UC Davis.
    9. Mo, Pengli & Yao, Yu & D’Ariano, Andrea & Liu, Zhiyuan, 2023. "The vehicle routing problem with underground logistics: Formulation and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    10. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T., 2017. "A metaheuristic for the multimodal network flow problem with product quality preservation and empty repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 321-344.
    11. repec:dar:wpaper:62383 is not listed on IDEAS
    12. Parvez Farazi, Nahid & Zou, Bo & Tulabandhula, Theja, 2022. "Dynamic On-Demand Crowdshipping Using Constrained and Heuristics-Embedded Double Dueling Deep Q-Network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    13. He, Dongdong & Guan, Wei, 2023. "Promoting service quality with incentive contracts in rural bus integrated passenger-freight service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    14. Jone R. Hansen & Kjetil Fagerholt & Magnus Stålhane & Jørgen G. Rakke, 2020. "An adaptive large neighborhood search heuristic for the planar storage location assignment problem: application to stowage planning for Roll-on Roll-off ships," Journal of Heuristics, Springer, vol. 26(6), pages 885-912, December.
    15. Su, Yue & Dupin, Nicolas & Parragh, Sophie N. & Puchinger, Jakob, 2024. "A Branch-and-Price algorithm for the electric autonomous Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    16. Arda, Yasemin & Cattaruzza, Diego & François, Véronique & Ogier, Maxime, 2024. "Home chemotherapy delivery: An integrated production scheduling and multi-trip vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 317(2), pages 468-486.
    17. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    18. J. Álvaro Gómez-Pantoja & M. Angélica Salazar-Aguilar & José Luis González-Velarde, 2021. "The food bank resource allocation problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 266-286, April.
    19. Li, Yuan & Chen, Haoxun & Prins, Christian, 2016. "Adaptive large neighborhood search for the pickup and delivery problem with time windows, profits, and reserved requests," European Journal of Operational Research, Elsevier, vol. 252(1), pages 27-38.
    20. Chen, Enming & Zhou, Zhongbao & Li, Ruiyang & Chang, Zhongxiang & Shi, Jianmai, 2024. "The multi-fleet delivery problem combined with trucks, tricycles, and drones for last-mile logistics efficiency requirements under multiple budget constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    21. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.

    More about this item

    Keywords

    Metaheuristic; ALNS; OR in health services; Scheduling;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:sdueko:2016_001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Astrid Holm Nielsen (email available below). General contact details of provider: https://edirc.repec.org/data/okioudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.