IDEAS home Printed from https://ideas.repec.org/p/hhs/rbnkwp/0181.html
   My bibliography  Save this paper

Inference in Vector Autoregressive Models with an Informative Prior on the Steady State

Author

Listed:
  • Villani, Mattias

    (Research Department, Central Bank of Sweden)

Abstract

Vector autoregressions have steadily gained in popularity since their introduction in econometrics 25 years ago. A drawback of the otherwise fairly well developed methodology is the inability to incorporate prior beliefs regarding the system's steady state in a satisfactory way. Such prior information are typically readily available and may be crucial for forecasts at long horizons. This paper develops easily implemented numerical simulation algorithms for analyzing stationary and cointegrated VARs in a parametrization where prior beliefs on the steady state may be adequately incorporated. The analysis is illustrated on macroeconomic data for the Euro area.

Suggested Citation

  • Villani, Mattias, 2005. "Inference in Vector Autoregressive Models with an Informative Prior on the Steady State," Working Paper Series 181, Sveriges Riksbank (Central Bank of Sweden).
  • Handle: RePEc:hhs:rbnkwp:0181
    as

    Download full text from publisher

    File URL: http://www.riksbank.com/upload/WorkingPapers/WP_181.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Villani, Mattias & Warne, Anders, 2003. "Monetary Policy Analysis in a Small Open Economy using Bayesian Cointegrated Structural VARs," Working Paper Series 156, Sveriges Riksbank (Central Bank of Sweden).
    2. Waggoner, Daniel F. & Zha, Tao, 2003. "A Gibbs sampler for structural vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 28(2), pages 349-366, November.
    3. Kleibergen, Frank & Paap, Richard, 2002. "Priors, posteriors and bayes factors for a Bayesian analysis of cointegration," Journal of Econometrics, Elsevier, vol. 111(2), pages 223-249, December.
    4. Schotman, Peter & van Dijk, Herman K., 1991. "A Bayesian analysis of the unit root in real exchange rates," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 195-238.
    5. John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, vol. 84(Q1), pages 4-18.
    6. Lubrano, Michel, 1995. "Testing for unit roots in a Bayesian framework," Journal of Econometrics, Elsevier, vol. 69(1), pages 81-109, September.
    7. Strachan, Rodney W. & Inder, Brett, 2004. "Bayesian analysis of the error correction model," Journal of Econometrics, Elsevier, vol. 123(2), pages 307-325, December.
    8. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139.
    9. Fagan, Gabriel & Henry, Jérôme & Mestre, Ricardo, 2001. "An area-wide model (AWM) for the euro area," Working Paper Series 42, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2008. "The new area-wide model of the euro area: a micro-founded open-economy model for forecasting and policy analysis," Working Paper Series 944, European Central Bank.
    2. Louzis Dimitrios P., 2016. "Steady-state priors and Bayesian variable selection in VAR forecasting," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(5), pages 495-527, December.
    3. International Monetary Fund, 2010. "Price Dynamics in China," IMF Working Papers 2010/221, International Monetary Fund.
    4. Helge Berger & Pär Österholm, 2011. "Does Money Growth Granger Cause Inflation in the Euro Area? Evidence from Out‐of‐Sample Forecasts Using Bayesian VARs," The Economic Record, The Economic Society of Australia, vol. 87(276), pages 45-60, March.
    5. Utlaut, Johannes Friederich & van Roye, Björn, 2010. "The effects of external shocks to business cycles in emerging Asia: A Bayesian VAR approach," Kiel Working Papers 1668, Kiel Institute for the World Economy (IfW Kiel).
    6. P&aauml;r Österholm & Jeromin Zettelmeyer, 2008. "The Effect of External Conditions on Growth in Latin America," IMF Staff Papers, Palgrave Macmillan, vol. 55(4), pages 595-623, December.
    7. Par Osterholm, 2008. "A structural Bayesian VAR for model-based fan charts," Applied Economics, Taylor & Francis Journals, vol. 40(12), pages 1557-1569.
    8. Pär Österholm, 2008. "Can forecasting performance be improved by considering the steady state? An application to Swedish inflation and interest rate," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(1), pages 41-51.
    9. Malin Adolfson & Michael K. Andersson & Jesper Lindé & Mattias Villani & Anders Vredin, 2007. "Modern Forecasting Models in Action: Improving Macroeconomic Analyses at Central Banks," International Journal of Central Banking, International Journal of Central Banking, vol. 3(4), pages 111-144, December.
    10. Roy P. P. M. Hoevenaars & Roderick D. J. Molenaar & Peter C. Schotman & Tom B. M. Steenkamp, 2014. "Strategic Asset Allocation For Long‐Term Investors: Parameter Uncertainty And Prior Information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 353-376, April.
    11. Dimitrios P. Louzis, 2019. "Steady‐state modeling and macroeconomic forecasting quality," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 285-314, March.
    12. Helge Berger & Pär Österholm, 2011. "Does Money Growth Granger Cause Inflation in the Euro Area? Evidence from Out‐of‐Sample Forecasts Using Bayesian VARs," The Economic Record, The Economic Society of Australia, vol. 87(276), pages 45-60, March.
    13. Dieppe, Alistair & van Roye, Björn & Legrand, Romain, 2016. "The BEAR toolbox," Working Paper Series 1934, European Central Bank.
    14. Mattias Villani, 2009. "Steady-state priors for vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 630-650.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattias Villani, 2009. "Steady-state priors for vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 630-650.
    2. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    3. Bin Jiang & Anastasios Panagiotelis & George Athanasopoulos & Rob Hyndman & Farshid Vahid, 2016. "Bayesian Rank Selection in Multivariate Regression," Monash Econometrics and Business Statistics Working Papers 6/16, Monash University, Department of Econometrics and Business Statistics.
    4. Andrea Silvestrini, 2010. "Testing fiscal sustainability in Poland: a Bayesian analysis of cointegration," Empirical Economics, Springer, vol. 39(1), pages 241-274, August.
    5. Warne, Anders, 2006. "Bayesian inference in cointegrated VAR models: with applications to the demand for euro area M3," Working Paper Series 692, European Central Bank.
    6. repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    7. repec:spo:wpmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    8. Charley Xia and William Griffiths, 2012. "Bayesian Unit Root Testing: The Effect Of Choice Of Prior On Test Outcomes," Department of Economics - Working Papers Series 1152, The University of Melbourne.
    9. Leeper, Eric M. & Zha, Tao, 2003. "Modest policy interventions," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1673-1700, November.
    10. Marriott, John & Newbold, Paul, 2000. "The strength of evidence for unit autoregressive roots and structural breaks: A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 98(1), pages 1-25, September.
    11. Marcet, Albert & Jarociński, Marek, 2010. "Autoregressions in small samples, priors about observables and initial conditions," Working Paper Series 1263, European Central Bank.
    12. Demeshev, Boris & Malakhovskaya, Oxana, 2016. "BVAR mapping," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 43, pages 118-141.
    13. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    14. M. Dossche & G. Everaert, 2005. "Measuring inflation persistence: a structural time series approach," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/340, Ghent University, Faculty of Economics and Business Administration.
    15. Lennart F. Hoogerheide & Johan F. Kaashoek, 2004. "Functional Approximations to Likelihoods/Posterior Densities: A Neural Network Approach to Efficient Sampling," Computing in Economics and Finance 2004 74, Society for Computational Economics.
    16. Kociecki, Andrzej, 2012. "Orbital Priors for Time-Series Models," MPRA Paper 42804, University Library of Munich, Germany.
    17. Juan F. Rubio-Ramirez & Daniel F. Waggoner & Tao Zha, 2005. "Markov-switching structural vector autoregressions: theory and application," FRB Atlanta Working Paper 2005-27, Federal Reserve Bank of Atlanta.
    18. Villani, Mattias, 2006. "Bayesian point estimation of the cointegration space," Journal of Econometrics, Elsevier, vol. 134(2), pages 645-664, October.
    19. Rodney W. Strachan & Herman K. van Dijk, 2014. "Divergent Priors and Well Behaved Bayes Factors," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(1), pages 1-31, March.
    20. Rodney Strachan & Herman K. van Dijk, "undated". "Bayesian Model Averaging in Vector Autoregressive Processes with an Investigation of Stability of the US Great Ratios and Risk of a Liquidity Trap in the USA, UK and Japan," MRG Discussion Paper Series 1407, School of Economics, University of Queensland, Australia.
    21. Chaturvedi, Anoop & Kumar, Jitendra, 2005. "Bayesian unit root test for model with maintained trend," Statistics & Probability Letters, Elsevier, vol. 74(2), pages 109-115, September.
    22. Chew Lian Chua & Sarantis Tsiaplias, 2014. "A Bayesian Approach to Modelling Bivariate Time-Varying Cointegration and Cointegrating Rank," Melbourne Institute Working Paper Series wp2014n27, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.

    More about this item

    Keywords

    Cointegration; Bayesian inference; Forecasting; Unconditional mean; VARs;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E50 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:rbnkwp:0181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lena Löfgren (email available below). General contact details of provider: https://edirc.repec.org/data/rbgovse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.