IDEAS home Printed from https://ideas.repec.org/p/hhs/oruesi/2015_009.html
   My bibliography  Save this paper

Bayesian Inference in Regression Models with Ordinal Explanatory Variables

Author

Listed:
  • Karlsson, Sune

    (Örebro University School of Business)

  • Temesgen, Asrat

    (Örebro University School of Business)

Abstract

This paper considers Bayesian inference procedures for regression models with ordinally observed explanatory variables. Taking advantage of a latent variable interpretation of the ordinally observed variable we develop an efficient Bayesian inference procedure that estimates the regression model of interest jointly with an auxiliary ordered probit model for the unobserved latent variable. The properties of the inference procedure and associated MCMC algorithm are assessed using simulated data. We illustrate our approach in an investigation of gender based wage discrimination in the Swedish labor market and find evidence of wage discrimination.

Suggested Citation

  • Karlsson, Sune & Temesgen, Asrat, 2015. "Bayesian Inference in Regression Models with Ordinal Explanatory Variables," Working Papers 2015:9, Örebro University, School of Business.
  • Handle: RePEc:hhs:oruesi:2015_009
    as

    Download full text from publisher

    File URL: https://www.oru.se/globalassets/oru-sv/institutioner/hh/workingpapers/workingpapers2015/wp-9-2015.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Breslaw, Jon A. & McIntosh, James, 1998. "Simulated latent variable estimation of models with ordered categorical data," Journal of Econometrics, Elsevier, vol. 87(1), pages 25-47, August.
    2. Oaxaca, Ronald, 1973. "Male-Female Wage Differentials in Urban Labor Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 693-709, October.
    3. Terza, Joseph V., 1987. "Estimating linear models with ordinal qualitative regressors," Journal of Econometrics, Elsevier, vol. 34(3), pages 275-291, March.
    4. Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Lubian & Anna Untertrifaller, 2014. "Cognitive ability, stereotypes and gender segregation in the workplace," Economics Bulletin, AccessEcon, vol. 34(2), pages 1268-1282.
    2. Alison L. Booth, 2006. "The Glass Ceiling in Europe: Why Are Women Doing Badly in the Labour Market?," CEPR Discussion Papers 542, Centre for Economic Policy Research, Research School of Economics, Australian National University.
    3. Michael E. Martell & Peyton Nash, 2020. "For Love and Money? Earnings and Marriage Among Same-Sex Couples," Journal of Labor Research, Springer, vol. 41(3), pages 260-294, September.
    4. Huong Thu Le & Ha Trong Nguyen, 2018. "The evolution of the gender test score gap through seventh grade: new insights from Australia using unconditional quantile regression and decomposition," IZA Journal of Labor Economics, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 7(1), pages 1-42, December.
    5. Ward-Warmedinger, Melanie E., 1999. "Salary and the Gender Salary Gap in the Academic Profession," IZA Discussion Papers 64, Institute of Labor Economics (IZA).
    6. Ilhom Abdulloev & Ira N Gang & Myeong-Su Yun, 2014. "Migration, Education and the Gender Gap in Labour Force Participation," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 26(4), pages 509-526, September.
    7. David Bravo Urrutia & Sergio Urzúa & Claudia Sanhueza, 2007. "Is There Labor Market Discrimination Among Professionals In Chile? Lawyers, Doctors And Business-People," Working Papers wp264, University of Chile, Department of Economics.
    8. Katie Meara & Francesco Pastore & Allan Webster, 2020. "The gender pay gap in the USA: a matching study," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(1), pages 271-305, January.
    9. Monsueto, Sandro Eduardo & Simão, Rosycler Cristal Santos, 2008. "The impact of gender discrimination on poverty in Brazil," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), August.
    10. Laetitia Duval & François-Charles Wolff, 2016. "Emigration intentions of Roma: evidence from Central and South-East Europe," Post-Communist Economies, Taylor & Francis Journals, vol. 28(1), pages 87-107, January.
    11. Sergio Longobardi & Margherita Maria Pagliuca & Andrea Regoli, 2018. "Can problem-solving attitudes explain the gender gap in financial literacy? Evidence from Italian students’ data," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(4), pages 1677-1705, July.
    12. Mahmood Araï & Gérard Ballot & Ali Skalli, 1996. "Différentiels intersectoriels de salaire et caractéristiques des employeurs en France," Économie et Statistique, Programme National Persée, vol. 299(1), pages 37-58.
    13. Gail Pacheco & Bill Cochrane, 2015. "Decomposing the temporary-permanent wage gap in New Zealand," Working Papers 2015-07, Auckland University of Technology, Department of Economics.
    14. Brandily, Paul & Brébion, Clément & Briole, Simon & Khoury, Laura, 2021. "A poorly understood disease? The impact of COVID-19 on the income gradient in mortality over the course of the pandemic," European Economic Review, Elsevier, vol. 140(C).
    15. Kai Hong & Peter A. Savelyev & Kegon T. K. Tan, 2020. "Understanding the Mechanisms Linking College Education with Longevity," Journal of Human Capital, University of Chicago Press, vol. 14(3), pages 371-400.
    16. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    17. Cattaneo, Maria Alejandra & Wolter, Stefan C., 2012. "Migration Policy Can Boost PISA Results: Findings from a Natural Experiment," IZA Discussion Papers 6300, Institute of Labor Economics (IZA).
    18. Guo, Qian & Song, Yang & Sun, Wenkai & Wang, Yijie, 2016. "Gender differences in performance-based pay: Evidence from a Chinese University," China Economic Review, Elsevier, vol. 41(C), pages 104-113.
    19. Jakub Picka, 2014. "Problém "public-private pay gap" v České republice [The Public-Private Pay Gap in the Czech Republic]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(5), pages 662-682.
    20. Yuqi Wang & Laurent Reyes & Emily A. Greenfield & Sarah R. Allred, 2022. "Municipal Ethnic Composition and Disparities in COVID-19 Infections in New Jersey: A Blinder–Oaxaca Decomposition Analysis," IJERPH, MDPI, vol. 19(21), pages 1-25, October.

    More about this item

    Keywords

    Markov Chain Monte Carlo; latent variables; ordered probit; wage discrimination;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:oruesi:2015_009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ieoruse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.