IDEAS home Printed from https://ideas.repec.org/p/hhs/oruesi/2015_002.html
   My bibliography  Save this paper

Calibration Estimation under Non-response and Missing Values in Auxiliary Information

Author

Listed:
  • Laitila, Thomas

    (Örebro University School of Business)

  • Wang, Lisha

    (Örebro University School of Business)

Abstract

The calibration approach is suggested in the literature for estimation in sample surveys under non-response given access to suitable auxiliary information. However, missing values in auxiliary information come up as a thorny but realistic problem. This paper considers the consistency of the calibration estimator suggested by Särndal & Lundström (2005)for estimation under nonresponse, connected with how imputation of auxiliary information based on different levels of register information affects the calibration estimator. An illustration is given with results from a small simulation study.

Suggested Citation

  • Laitila, Thomas & Wang, Lisha, 2015. "Calibration Estimation under Non-response and Missing Values in Auxiliary Information," Working Papers 2015:2, Örebro University, School of Business.
  • Handle: RePEc:hhs:oruesi:2015_002
    as

    Download full text from publisher

    File URL: https://www.oru.se/globalassets/oru-sv/institutioner/hh/workingpapers/workingpapers2015/wp-2-2015.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Montanari, Giorgio E. & Ranalli, M. Giovanna, 2005. "Nonparametric Model Calibration Estimation in Survey Sampling," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1429-1442, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Rueda & I. Sánchez-Borrego & A. Arcos & S. Martínez, 2010. "Model-calibration estimation of the distribution function using nonparametric regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(1), pages 33-44, January.
    2. Barranco-Chamorro, I. & Jiménez-Gamero, M.D. & Moreno-Rebollo, J.L. & Muñoz-Pichardo, J.M., 2012. "Case-deletion type diagnostics for calibration estimators in survey sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2219-2236.
    3. I. Sánchez-Borrego & A. Arcos & M. Rueda, 2019. "Kernel-based methods for combining information of several frame surveys," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 71-86, January.
    4. Särndal Carl-Erik & Traat Imbi & Lumiste Kaur, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 183-200, June.
    5. Sumanta Adhya & Tathagata Banerjee & Gaurangadeb Chattopadhyay, 2012. "Inference on finite population categorical response: nonparametric regression-based predictive approach," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 69-98, January.
    6. Luis Castro-Martín & María del Mar Rueda & Ramón Ferri-García & César Hernando-Tamayo, 2021. "On the Use of Gradient Boosting Methods to Improve the Estimation with Data Obtained with Self-Selection Procedures," Mathematics, MDPI, vol. 9(23), pages 1-23, November.
    7. Maria del Mar Rueda, 2019. "Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1077-1081, December.
    8. Changbao Wu & Wilson W. Lu, 2016. "Calibration Weighting Methods for Complex Surveys," International Statistical Review, International Statistical Institute, vol. 84(1), pages 79-98, April.
    9. Singh, Sarjinder & Kim, Jong-Min, 2011. "A pseudo-empirical log-likelihood estimator using scrambled responses," Statistics & Probability Letters, Elsevier, vol. 81(3), pages 345-351, March.
    10. Laura Borrajo & Ricardo Cao, 2021. "Nonparametric estimation for big-but-biased data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 861-883, December.
    11. Carl-Erik Särndal & Imbi Traat & Kaur Lumiste, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 183-200, June.
    12. Domingo Morales & María del Mar Rueda & Dolores Esteban, 2018. "Model-Assisted Estimation of Small Area Poverty Measures: An Application within the Valencia Region in Spain," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(3), pages 873-900, August.
    13. Jae Kwang Kim & Mingue Park, 2010. "Calibration Estimation in Survey Sampling," International Statistical Review, International Statistical Institute, vol. 78(1), pages 21-39, April.
    14. Jan Pablo Burgard & Ralf Münnich & Martin Rupp, 2019. "A Generalized Calibration Approach Ensuring Coherent Estimates with Small Area Constraints," Research Papers in Economics 2019-10, University of Trier, Department of Economics.
    15. Changbao Wu & Shixiao Zhang, 2019. "Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1082-1086, December.
    16. Zhan Liu & Chaofeng Tu & Yingli Pan, 2022. "Model-assisted calibration with SCAD to estimated control for non-probability samples," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 849-879, October.
    17. Giancarlo Diana & Pier Francesco Perri, 2012. "A calibration-based approach to sensitive data: a simulation study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 53-65, March.
    18. Denis Devaud & Yves Tillé, 2019. "Rejoinder on: Deville and Särndal’s calibration: revisiting a 25-year-old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1087-1091, December.

    More about this item

    Keywords

    Sample survey; non-response; imputation; consistency; bias;
    All these keywords.

    JEL classification:

    • C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:oruesi:2015_002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ieoruse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.