IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v78y2010i1p21-39.html
   My bibliography  Save this article

Calibration Estimation in Survey Sampling

Author

Listed:
  • Jae Kwang Kim
  • Mingue Park

Abstract

Calibration estimation, where the sampling weights are adjusted to make certain estimators match known population totals, is commonly used in survey sampling. The generalized regression estimator is an example of a calibration estimator. Given the functional form of the calibration adjustment term, we establish the asymptotic equivalence between the functional‐form calibration estimator and an instrumental variable calibration estimator where the instrumental variable is directly determined from the functional form in the calibration equation. Variance estimation based on linearization is discussed and applied to some recently proposed calibration estimators. The results are extended to the estimator that is a solution to the calibrated estimating equation. Results from a limited simulation study are presented. L'estimation par calage, pour laquelle les poids de sondage sont ajustés de manière à ce que certains estimateurs coïncident avec des totaux connus dans la population, est fréquemment utilisée en échantillonnage. L'estimateur par la régression généralisée est un exemple d'un estimateur de calage. Dans le cas où les facteurs d'ajustement sont exprimés selon une forme fonctionnelle, nous établissons l'équivalence asymptotique entre l'estimateur de calage ave celui avec variable instrumentale, où la variable instrumentale est directement déterminée à partir de la forme fonctionnelle dans l'équation de calage. L'estimation de la variance par linéarisation est traitée et appliquée à certains estimateurs de calage proposés récemment. Les résultats sont généralisés à l'estimateur solution de l'équation estimante calée. Les résultats d'une étude par simulation limitée sont présentés.

Suggested Citation

  • Jae Kwang Kim & Mingue Park, 2010. "Calibration Estimation in Survey Sampling," International Statistical Review, International Statistical Institute, vol. 78(1), pages 21-39, April.
  • Handle: RePEc:bla:istatr:v:78:y:2010:i:1:p:21-39
    DOI: 10.1111/j.1751-5823.2010.00099.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2010.00099.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2010.00099.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Chen, 2002. "Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys," Biometrika, Biometrika Trust, vol. 89(1), pages 230-237, March.
    2. Montanari, Giorgio E. & Ranalli, M. Giovanna, 2005. "Nonparametric Model Calibration Estimation in Survey Sampling," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1429-1442, December.
    3. Yves Tillé, 1998. "Estimation in Surveys Using Conditional Inclusion Probabilities: Simple Random Sampling," International Statistical Review, International Statistical Institute, vol. 66(3), pages 303-322, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamori, Shigeyuki & Motegi, Kaiji & Zhang, Zheng, 2019. "Calibration estimation of semiparametric copula models with data missing at random," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 85-109.
    2. Denis Devaud & Yves Tillé, 2019. "Deville and Särndal’s calibration: revisiting a 25-years-old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1033-1065, December.
    3. Maria del Mar Rueda, 2019. "Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1077-1081, December.
    4. Jae Kwang Kim & Zhonglei Wang & Zhengyuan Zhu & Nathan B. Cruze, 2018. "Combining Survey and Non-survey Data for Improved Sub-area Prediction Using a Multi-level Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 175-189, June.
    5. Gelein, Brigitte & Haziza, David & Causeur, David, 2014. "Preserving relationships between variables with MIVQUE based imputation for missing survey data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 197-208.
    6. Jae‐Kwang Kim & Siu‐Ming Tam, 2021. "Data Integration by Combining Big Data and Survey Sample Data for Finite Population Inference," International Statistical Review, International Statistical Institute, vol. 89(2), pages 382-401, August.
    7. Kwun Chuen Gary Chan & Sheung Chi Phillip Yam & Zheng Zhang, 2016. "Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 673-700, June.
    8. Changbao Wu & Wilson W. Lu, 2016. "Calibration Weighting Methods for Complex Surveys," International Statistical Review, International Statistical Institute, vol. 84(1), pages 79-98, April.
    9. Carol Liu, 2024. "BayesSRW: Bayesian Sampling and Re-weighting approach for variance reduction," Papers 2408.15454, arXiv.org.
    10. West Brady T. & Sakshaug Joseph W. & Aurelien Guy Alain S., 2018. "Accounting for Complex Sampling in Survey Estimation: A Review of Current Software Tools," Journal of Official Statistics, Sciendo, vol. 34(3), pages 721-752, September.
    11. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Pablo Burgard & Ralf Münnich & Martin Rupp, 2019. "A Generalized Calibration Approach Ensuring Coherent Estimates with Small Area Constraints," Research Papers in Economics 2019-10, University of Trier, Department of Economics.
    2. Changbao Wu & Shixiao Zhang, 2019. "Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1082-1086, December.
    3. Jean-Francois Beaumont & Cynthia Bocci, 2008. "Another look at ridge calibration," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 5-20.
    4. Changbao Wu & Wilson W. Lu, 2016. "Calibration Weighting Methods for Complex Surveys," International Statistical Review, International Statistical Institute, vol. 84(1), pages 79-98, April.
    5. Carl-Erik Särndal & Imbi Traat & Kaur Lumiste, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 183-200, June.
    6. Variyath A. M., 2013. "Empirical Likelihood Based Control Charts," Stochastics and Quality Control, De Gruyter, vol. 28(1), pages 37-44, October.
    7. Domingo Morales & María del Mar Rueda & Dolores Esteban, 2018. "Model-Assisted Estimation of Small Area Poverty Measures: An Application within the Valencia Region in Spain," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(3), pages 873-900, August.
    8. M. Rueda & I. Sánchez-Borrego & A. Arcos & S. Martínez, 2010. "Model-calibration estimation of the distribution function using nonparametric regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(1), pages 33-44, January.
    9. Xiaogang Duan & Guosheng Yin, 2017. "Ensemble Approaches to Estimating the Population Mean with Missing Response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 899-917, December.
    10. Denis Devaud & Yves Tillé, 2019. "Deville and Särndal’s calibration: revisiting a 25-years-old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1033-1065, December.
    11. Barranco-Chamorro, I. & Jiménez-Gamero, M.D. & Moreno-Rebollo, J.L. & Muñoz-Pichardo, J.M., 2012. "Case-deletion type diagnostics for calibration estimators in survey sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2219-2236.
    12. Janusz Wywiał, 2003. "On conditional sampling strategies," Statistical Papers, Springer, vol. 44(3), pages 397-419, July.
    13. Nicholas-James Clavet & Jean-Yves Duclos & Bernard Fortin & Steeve Marchand, 2012. "Le Québec, 2004-2030 : une analyse de micro-simulation," CIRANO Project Reports 2012rp-16, CIRANO.
    14. Rong Tang & Yun Yang, 2022. "Bayesian inference for risk minimization via exponentially tilted empirical likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1257-1286, September.
    15. Anne Konrad & Jan Pablo Burgard & Ralf Münnich, 2021. "A Two‐level GREG Estimator for Consistent Estimation in Household Surveys," International Statistical Review, International Statistical Institute, vol. 89(3), pages 635-656, December.
    16. Dong Liang & Genevieve Nesslage & Michael Wilberg & Thomas Miller, 2017. "Bayesian Calibration of Blue Crab (Callinectes sapidus) Abundance Indices Based on Probability Surveys," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 481-497, December.
    17. I. Sánchez-Borrego & A. Arcos & M. Rueda, 2019. "Kernel-based methods for combining information of several frame surveys," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 71-86, January.
    18. Denis Heng Yan Leung & Ken Yamada & Biao Zhang, 2015. "Enriching Surveys with Supplementary Data and its Application to Studying Wage Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 155-179, March.
    19. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    20. Yves G. Berger, 2016. "Empirical Likelihood Inference for the Rao-Hartley-Cochran Sampling Design," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 721-735, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:78:y:2010:i:1:p:21-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.