IDEAS home Printed from https://ideas.repec.org/p/hhs/nhhfms/2008_014.html
   My bibliography  Save this paper

Treating missing values in INAR(1) models

Author

Listed:
  • Andersson, Jonas

    (Dept. of Finance and Management Science, Norwegian School of Economics and Business Administration)

  • Karlis, Dimitris

    (Department of Statistics, Athens University of Economics and Business)

Abstract

Time series models for count data have found increased interest in recent days. The existing literature refers to the case of data that have been fully observed. In the present paper, methods for estimating the parameters of the first-order integer-valued autoregressive model in the presence of missing data are proposed. The first method maximizes a conditional likelihood constructed via the observed data based on the k-step-ahead conditional distributions to account for the gaps in the data. The second approach is based on an iterative scheme where missing values are imputed in order to update the estimated parameters. The first method is useful when the predictive distributions have simple forms. We derive in full details this approach when the innovations are assumed to follow a finite mixture of Poisson distributions. The second method is applicable when there are not closed form expressions for the conditional likelihood or they are hard to derive. Simulation results and comparisons of the methods are reported. The proposed methods are applied to a data set concerning syndromic surveillance during the Athens 2004 Olympic Games.

Suggested Citation

  • Andersson, Jonas & Karlis, Dimitris, 2008. "Treating missing values in INAR(1) models," Discussion Papers 2008/14, Norwegian School of Economics, Department of Business and Management Science.
  • Handle: RePEc:hhs:nhhfms:2008_014
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/11250/164126
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kurt Brannas & Jorgen Hellstrom, 2001. "Generalized Integer-Valued Autoregression," Econometric Reviews, Taylor & Francis Journals, vol. 20(4), pages 425-443.
    2. Freeland, R. K. & McCabe, B. P. M., 2004. "Forecasting discrete valued low count time series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 427-434.
    3. McCabe, B.P.M. & Martin, G.M., 2005. "Bayesian predictions of low count time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 315-330.
    4. Robert Jung & Gerd Ronning & A. Tremayne, 2005. "Estimation in conditional first order autoregression with discrete support," Statistical Papers, Springer, vol. 46(2), pages 195-224, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Robert C. & Tremayne, A.R., 2006. "Coherent forecasting in integer time series models," International Journal of Forecasting, Elsevier, vol. 22(2), pages 223-238.
    2. Vance L. Martin & Andrew R. Tremayne & Robert C. Jung, 2014. "Efficient Method Of Moments Estimators For Integer Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 491-516, November.
    3. Bisaglia, Luisa & Canale, Antonio, 2016. "Bayesian nonparametric forecasting for INAR models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 70-78.
    4. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    5. Timothy Christensen & Stan Hurn & Kenneth Lindsay, 2009. "It Never Rains but it Pours: Modeling the Persistence of Spikes in Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-48.
    6. Dungey Mardi & Martin Vance L. & Tang Chrismin & Tremayne Andrew, 2020. "A threshold mixed count time series model: estimation and application," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(2), pages 1-18, April.
    7. Martin, Gael M. & Loaiza-Maya, Rubén & Maneesoonthorn, Worapree & Frazier, David T. & Ramírez-Hassan, Andrés, 2022. "Optimal probabilistic forecasts: When do they work?," International Journal of Forecasting, Elsevier, vol. 38(1), pages 384-406.
    8. Víctor Enciso‐Mora & Peter Neal & T. Subba Rao, 2009. "Efficient order selection algorithms for integer‐valued ARMA processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 1-18, January.
    9. Ng, Jason & Forbes, Catherine S. & Martin, Gael M. & McCabe, Brendan P.M., 2013. "Non-parametric estimation of forecast distributions in non-Gaussian, non-linear state space models," International Journal of Forecasting, Elsevier, vol. 29(3), pages 411-430.
    10. Wooi Chen Khoo & Seng Huat Ong & Biswas Atanu, 2022. "Coherent Forecasting for a Mixed Integer-Valued Time Series Model," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
    11. Feike C. Drost & Ramon van den Akker & Bas J. M. Werker, 2009. "Efficient estimation of auto‐regression parameters and innovation distributions for semiparametric integer‐valued AR(p) models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 467-485, April.
    12. Annika Homburg & Christian H. Weiß & Layth C. Alwan & Gabriel Frahm & Rainer Göb, 2019. "Evaluating Approximate Point Forecasting of Count Processes," Econometrics, MDPI, vol. 7(3), pages 1-28, July.
    13. Bu, Ruijun & McCabe, Brendan, 2008. "Model selection, estimation and forecasting in INAR(p) models: A likelihood-based Markov Chain approach," International Journal of Forecasting, Elsevier, vol. 24(1), pages 151-162.
    14. T M Christensen & A. S. Hurn & K A Lindsay, 2008. "Discrete time-series models when counts are unobservable," NCER Working Paper Series 35, National Centre for Econometric Research.
    15. Annika Homburg & Christian H. Weiß & Layth C. Alwan & Gabriel Frahm & Rainer Göb, 2021. "A performance analysis of prediction intervals for count time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 603-625, July.
    16. Brajendra C. Sutradhar, 2008. "On forecasting counts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 109-129.
    17. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    18. Aliou DIAGNE, 2006. "Diffusion And Adoption Of Nerica Rice Varieties In Côte D’Ivoire," The Developing Economies, Institute of Developing Economies, vol. 44(2), pages 208-231, June.
    19. McCabe, B.P.M. & Martin, G.M., 2005. "Bayesian predictions of low count time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 315-330.
    20. Francesco Bravo, 2011. "Comment on: Subsampling weakly dependent time series and application to extremes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 483-486, November.

    More about this item

    Keywords

    Imputation; Markov Chain EM algorithm; mixed Poisson; discrete valued time series;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:nhhfms:2008_014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stein Fossen (email available below). General contact details of provider: https://edirc.repec.org/data/dfnhhno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.