IDEAS home Printed from https://ideas.repec.org/p/hhs/lunewp/2020_001.html
   My bibliography  Save this paper

Happiness and Gold Prices

Author

Listed:

Abstract

We use the Twitter-based Hedonometer happiness index to study the link between happiness and gold price changes. We find no significant correlation between the two when we look at correlations across the entire distributions. However, turning to an extreme value theory (EVT) modeling of the tails of the non-normally distributed happiness distribution we find that during particularly depressing days the gold price often goes up. In a sense, gold is found to serve as a happiness-related safe haven, i.e. as a hedge against extreme unhappiness.

Suggested Citation

  • Byström, Hans, 2020. "Happiness and Gold Prices," Working Papers 2020:1, Lund University, Department of Economics.
  • Handle: RePEc:hhs:lunewp:2020_001
    as

    Download full text from publisher

    File URL: https://lucris.lub.lu.se/ws/portalfiles/portal/184602090/WP20_1
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zhao, Ruwei, 2020. "Quantifying the cross sectional relation of daily happiness sentiment and stock return: Evidence from US," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    2. Dirk G. Baur & Brian M. Lucey, 2010. "Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold," The Financial Review, Eastern Finance Association, vol. 45(2), pages 217-229, May.
    3. Zhang, Wei & Li, Xiao & Shen, Dehua & Teglio, Andrea, 2016. "Daily happiness and stock returns: Some international evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 201-209.
    4. You, Wanhai & Guo, Yawei & Peng, Cheng, 2017. "Twitter's daily happiness sentiment and the predictability of stock returns," Finance Research Letters, Elsevier, vol. 23(C), pages 58-64.
    5. Ciner, Cetin & Gurdgiev, Constantin & Lucey, Brian M., 2013. "Hedges and safe havens: An examination of stocks, bonds, gold, oil and exchange rates," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 202-211.
    6. Zhao, Ruwei, 2020. "Quantifying the cross sectional relation of daily happiness sentiment and return skewness: Evidence from US industries," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    7. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    8. Shen, Dehua & Liu, Lanbiao & Zhang, Yongjie, 2018. "Quantifying the cross-sectional relationship between online sentiment and the skewness of stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 928-934.
    9. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Văn, Lê & Bảo, Nguyễn Khắc Quốc, 2022. "The relationship between global stock and precious metals under Covid-19 and happiness perspectives," Resources Policy, Elsevier, vol. 77(C).
    2. Naeem, Muhammad Abubakr & Farid, Saqib & Faruk, Balli & Shahzad, Syed Jawad Hussain, 2020. "Can happiness predict future volatility in stock markets?," Research in International Business and Finance, Elsevier, vol. 54(C).
    3. Chen, Wen-Yi & Chen, Mei-Ping, 2022. "Twitter’s daily happiness sentiment, economic policy uncertainty, and stock index fluctuations," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    4. Yousaf, Imran & Youssef, Manel & Goodell, John W., 2022. "Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index," International Review of Financial Analysis, Elsevier, vol. 83(C).
    5. Li, Yue & W. Goodell, John & Shen, Dehua, 2021. "Does happiness forecast implied volatility? Evidence from nonparametric wave-based Granger causality testing," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 113-122.
    6. Lee, Chien-Chiang & Chen, Mei-Ping, 2020. "Happiness sentiments and the prediction of cross-border country exchange-traded fund returns," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    7. Wang, Xinya & Lucey, Brian & Huang, Shupei, 2022. "Can gold hedge against oil price movements: Evidence from GARCH-EVT wavelet modeling," Journal of Commodity Markets, Elsevier, vol. 27(C).
    8. Qadan, Mahmoud & Aharon, David Y. & Cohen, Gil, 2020. "Everybody likes shopping, including the US capital market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    9. Chen, Qitong & Zhu, Huiming & Yu, Dongwei & Hau, Liya, 2022. "How does investor attention matter for crude oil prices and returns? Evidence from time-frequency quantile causality analysis," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    10. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    11. Bonato, Matteo & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "A note on investor happiness and the predictability of realized volatility of gold," Finance Research Letters, Elsevier, vol. 39(C).
    12. Swamy, Vighneswara & Lagesh, M.A., 2023. "Does happy Twitter forecast gold price?," Resources Policy, Elsevier, vol. 81(C).
    13. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    14. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
    15. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "Twitter’s daily happiness sentiment and international stock returns: Evidence from linear and nonlinear causality tests," Journal of Behavioral and Experimental Finance, Elsevier, vol. 18(C), pages 50-53.
    16. Bedoui, Rihab & Benkraiem, Ramzi & Guesmi, Khaled & Kedidi, Islem, 2023. "Portfolio optimization through hybrid deep learning and genetic algorithms vine Copula-GARCH-EVT-CVaR model," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    17. Aye, Goodness & Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong, 2015. "Forecasting the price of gold using dynamic model averaging," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 257-266.
    18. Bouri, Elie & Lucey, Brian & Roubaud, David, 2020. "Cryptocurrencies and the downside risk in equity investments," Finance Research Letters, Elsevier, vol. 33(C).
    19. Das, Debojyoti & Bhatia, Vaneet & Kumar, Surya Bhushan & Basu, Sankarshan, 2022. "Do precious metals hedge crude oil volatility jumps?," International Review of Financial Analysis, Elsevier, vol. 83(C).
    20. Vicente J. Bolós & Rafael Benítez & Román Ferrer, 2020. "A New Wavelet Tool to Quantify Non-Periodicity of Non-Stationary Economic Time Series," Mathematics, MDPI, vol. 8(5), pages 1-16, May.

    More about this item

    Keywords

    Twitter; happiness; Hedonometer; gold price; tail; extreme value theory;
    All these keywords.

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets
    • G50 - Financial Economics - - Household Finance - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:lunewp:2020_001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iker Arregui Alegria (email available below). General contact details of provider: https://edirc.repec.org/data/delunse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.