IDEAS home Printed from https://ideas.repec.org/p/hhs/lunewp/2003_017.html
   My bibliography  Save this paper

The Impact of Estimation Error on Portfolio Selection for Investors with Constant Relative Risk Aversion

Author

Listed:
  • Bengtsson, Christoffer

    (Department of Economics, Lund University)

Abstract

This paper examines the impact of estimation error in a simple single-period portfolio choice problem when the investor has power utility and asset returns are jointly lognormally distributed. These assumptions imply that such an investor selects portfolios using a modified mean-variance framework where the parameters that he has to estimate are the mean vector of log returns and the covariance matrix of log returns. Following Chopra and Ziemba (1993), I simulate estimation error in what are assumed to be the true mean vector and the true covariance matrix and the impact of estimation error is measured in terms of percentage cash equivalence loss for the investor. To obtain estimation error sizes that are similar to the estimation error sizes in actual estimates, I use a Bayesian approach and Markov Chain Monte Carlo Methods. The empirical results differ significantly from Chopra and Ziemba (1993), suggesting that the effect of estimation error may have been overestimated in the past. Furthermore, the results tend to question the traditional viewpoint that estimating the covariance matrix correctly is strictly less important than estimating the mean vector correctly.

Suggested Citation

  • Bengtsson, Christoffer, 2003. "The Impact of Estimation Error on Portfolio Selection for Investors with Constant Relative Risk Aversion," Working Papers 2003:17, Lund University, Department of Economics, revised 29 Apr 2004.
  • Handle: RePEc:hhs:lunewp:2003_017
    as

    Download full text from publisher

    File URL: http://project.nek.lu.se/publications/workpap/Papers/WP03_17.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    2. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    3. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    4. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
    5. Ohlson, J. A. & Ziemba, W. T., 1976. "Portfolio Selection in a Lognormal Market When the Investor Has a Power Utility Function," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 11(1), pages 57-71, March.
    6. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marc S. Paolella, 2014. "Fast Methods For Large-Scale Non-Elliptical Portfolio Optimization," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 1-32.
    2. Platanakis, Emmanouil & Sakkas, Athanasios & Sutcliffe, Charles, 2019. "Harmful diversification: Evidence from alternative investments," The British Accounting Review, Elsevier, vol. 51(1), pages 1-23.
    3. A. D. Hall & S. E. Satchell & P. J. Spence, 2015. "Evaluating the impact of inequality constraints and parameter uncertainty on optimal portfolio choice," Applied Economics, Taylor & Francis Journals, vol. 47(45), pages 4801-4813, September.
    4. La Gubu & Dedi Rosadi & Abdurakhman, 2020. "Robust Mean–Variance Portfolio Selection Using Cluster Analysis: A Comparison between Kamila and Weighted K-Mean Clustering," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 10(10), pages 1169-1186, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levy, Haim & Simaan, Yusif, 2016. "More possessions, more worry," European Journal of Operational Research, Elsevier, vol. 255(3), pages 893-902.
    2. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    3. Mishra, Anil V., 2016. "Foreign bias in Australian-domiciled mutual fund holdings," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 101-123.
    4. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    5. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    6. Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
    7. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    8. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    9. Mishra, Anil V., 2015. "Measures of equity home bias puzzle," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 293-312.
    10. Jonathan Fletcher, 2009. "Risk Reduction and Mean‐Variance Analysis: An Empirical Investigation," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 36(7‐8), pages 951-971, September.
    11. Thomas Trier Bjerring & Omri Ross & Alex Weissensteiner, 2017. "Feature selection for portfolio optimization," Annals of Operations Research, Springer, vol. 256(1), pages 21-40, September.
    12. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    13. Carroll, Rachael & Conlon, Thomas & Cotter, John & Salvador, Enrique, 2017. "Asset allocation with correlation: A composite trade-off," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1164-1180.
    14. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    15. Frahm, Gabriel & Wiechers, Christof, 2011. "On the diversification of portfolios of risky assets," Discussion Papers in Econometrics and Statistics 2/11, University of Cologne, Institute of Econometrics and Statistics.
    16. Wachter, Jessica A. & Warusawitharana, Missaka, 2009. "Predictable returns and asset allocation: Should a skeptical investor time the market?," Journal of Econometrics, Elsevier, vol. 148(2), pages 162-178, February.
    17. Guillaume Coqueret, 2015. "Diversified minimum-variance portfolios," Annals of Finance, Springer, vol. 11(2), pages 221-241, May.
    18. Jianqing Fan & Jingjin Zhang & Ke Yu, 2008. "Asset Allocation and Risk Assessment with Gross Exposure Constraints for Vast Portfolios," Papers 0812.2604, arXiv.org.
    19. Guidolin, Massimo & Wang, Kai, 2023. "The empirical performance of option implied volatility surface-driven optimal portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    20. Hongseon Kim & Soonbong Lee & Seung Bum Soh & Seongmoon Kim, 2022. "Improving portfolio investment performance with distance‐based portfolio‐combining algorithms," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 45(4), pages 941-959, December.

    More about this item

    Keywords

    Portfolio selection; Estimation risk; Markov Chain Monte Carlo;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:lunewp:2003_017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iker Arregui Alegria (email available below). General contact details of provider: https://edirc.repec.org/data/delunse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.