IDEAS home Printed from https://ideas.repec.org/p/hhs/hastef/0427.html
   My bibliography  Save this paper

A Classifying Procedure for Signaling Turning Points

Author

Listed:
  • Koskinen, Lasse

    (The Central Pension Security Institute)

  • Öller, Lars-Erik

    (National Institute of Economic Research)

Abstract

A Hidden Markov Model (HMM) is used to classify an out of sample observation vector into either of two regimes. This leads to a procedure for making probability forecasts for changes of regimes in a time series, i.e. for turning points. Instead o maximizing a likelihood, the model is estimated with respect to known past regimes. This makes it possible to perform feature extraction and estimation for different forecasting horizons. The inference aspect is emphasized by including a penalty for a wrong decision in the cost function. The method is tested by forecasting turning points in the Swedish and US economies, using leading data. Clear and early turning point signals are obtained, contrasting favourable with earlier HMM studies. Some theoretical arguments for this are given.

Suggested Citation

  • Koskinen, Lasse & Öller, Lars-Erik, 2001. "A Classifying Procedure for Signaling Turning Points," SSE/EFI Working Paper Series in Economics and Finance 427, Stockholm School of Economics.
  • Handle: RePEc:hhs:hastef:0427
    as

    Download full text from publisher

    File URL: http://swopec.hhs.se/hastef/papers/hastef0427.pdf
    File Function: Complete Rendering
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    2. Fintzen, David & Stekler, H. O., 1999. "Why did forecasters fail to predict the 1990 recession?," International Journal of Forecasting, Elsevier, vol. 15(3), pages 309-323, July.
    3. Gordon, Stephen, 1997. "Stochastic Trends, Deterministic Trends, and Business Cycle Turning Points," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(4), pages 411-434, July-Aug..
    4. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    5. Oller, Lars-Erik & Tallbom, Christer, 1996. "Smooth and timely business cycle indicators for noisy Swedish data," International Journal of Forecasting, Elsevier, vol. 12(3), pages 389-402, September.
    6. Artis, Michael J, et al, 1995. "Turning Point Prediction for the UK Using CSO Leading Indicators," Oxford Economic Papers, Oxford University Press, vol. 47(3), pages 397-417, July.
    7. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    8. Filardo, Andrew J, 1994. "Business-Cycle Phases and Their Transitional Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 299-308, July.
    9. Hamilton, James D & Perez-Quiros, Gabriel, 1996. "What Do the Leading Indicators Lead?," The Journal of Business, University of Chicago Press, vol. 69(1), pages 27-49, January.
    10. James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1.
    11. Diebold, Francis X & Rudebusch, Glenn D, 1990. "A Nonparametric Investigation of Duration Dependence in the American Business Cycle," Journal of Political Economy, University of Chicago Press, vol. 98(3), pages 596-616, June.
    12. Stock, James H. & Watson, Mark W. (ed.), 1993. "Business Cycles, Indicators, and Forecasting," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226774886, April.
    13. Ivanova, Detelina & Lahiri, Kajal & Seitz, Franz, 2000. "Interest rate spreads as predictors of German inflation and business cycles," International Journal of Forecasting, Elsevier, vol. 16(1), pages 39-58.
    14. Kontolemis, Zenon G, 2001. "Analysis of the US Business Cycle with a Vector-Markov-Switching Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(1), pages 47-61, January.
    15. Stéphane Grégoir & Fabrice Lenglart, 1998. "Measuring the Probability of a Business Cycle Turning Point by Using a Multivariate Qualitative Hidden Markov Model," Working Papers 98-48, Center for Research in Economics and Statistics.
    16. Layton, Allan P., 1996. "Dating and predicting phase changes in the U.S. business cycle," International Journal of Forecasting, Elsevier, vol. 12(3), pages 417-428, September.
    17. James H. Stock & Mark W. Watson, 1993. "Introduction to "Business Cycles, Indicators and Forecasting"," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 1-10, National Bureau of Economic Research, Inc.
    18. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Bernardelli & Mariusz Próchniak & Bartosz Witkowski, 2017. "Cycle and Income-Level Convergence in the EU Countries: An Identification of Turning Points Based on the Hidden Markov Models," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 47, pages 27-42.
    2. Klaus Abberger, 2004. "Nonparametric Regression and the Detection of Turning Points in the Ifo Business Climate," CESifo Working Paper Series 1283, CESifo.
    3. Chow, Hwee Kwan & Choy, Keen Meng, 2006. "Forecasting the global electronics cycle with leading indicators: A Bayesian VAR approach," International Journal of Forecasting, Elsevier, vol. 22(2), pages 301-315.
    4. Tan, Zhengxun & Liu, Juan & Chen, Juanjuan, 2021. "Detecting stock market turning points using wavelet leaders method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    5. Michal Bernardelli & Mariusz Prochniak & Bartosz Witkowski, 2017. "The application of hidden Markov models to the analysis of real convergence," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 17, pages 59-80.
    6. Michał Bernardelli & Mariusz Próchniak & Bartosz Witkowski, 2018. "Przydatność ukrytych modeli Markowa do oceny podobieństwa krajów w zakresie synchronizacji wahań cyklicznych i wyrównywania się poziomów dochodu," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 53, pages 77-96.
    7. Hansson, Jesper & Jansson, Per & Lof, Marten, 2005. "Business survey data: Do they help in forecasting GDP growth?," International Journal of Forecasting, Elsevier, vol. 21(2), pages 377-389.
    8. Guizzardi, Andrea & Stacchini, Annalisa, 2015. "Real-time forecasting regional tourism with business sentiment surveys," Tourism Management, Elsevier, vol. 47(C), pages 213-223.
    9. Andersson, Eva, 2007. "Effect of dependency in systems for multivariate surveillance," Research Reports 2007:1, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    10. Yun-Ling Wu & Cheng-Huang Tung & Chun-Chang Lee, 2017. "The Power of a Leading Indicators Fluctuation Trend for Forecasting Taiwans Real Estate Business Cycle: An Application of a Hidden Markov Model," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 7(1), pages 81-98, January.
    11. Ard Reijer & Andreas Johansson, 2019. "Nowcasting Swedish GDP with a large and unbalanced data set," Empirical Economics, Springer, vol. 57(4), pages 1351-1373, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Andersson & D. Bock & M. Frisen, 2006. "Some statistical aspects of methods for detection of turning points in business cycles," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(3), pages 257-278.
    2. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    3. Maximo Camacho, 2004. "Vector smooth transition regression models for US GDP and the composite index of leading indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(3), pages 173-196.
    4. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    5. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    6. Castro, Vítor, 2010. "The duration of economic expansions and recessions: More than duration dependence," Journal of Macroeconomics, Elsevier, vol. 32(1), pages 347-365, March.
    7. Maximo Camacho & Gabriel Perez-Quiros, 2002. "This is what the leading indicators lead," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(1), pages 61-80.
    8. Qi, Min, 2001. "Predicting US recessions with leading indicators via neural network models," International Journal of Forecasting, Elsevier, vol. 17(3), pages 383-401.
    9. Moradi, Alireza, 2016. "Modeling Business Cycle Fluctuations through Markov Switching VAR:An Application to Iran," MPRA Paper 73608, University Library of Munich, Germany.
    10. Chris Birchenhall & Denise Osborn & Marianne Sensier, 2001. "Predicting UK Business Cycle Regimes," Scottish Journal of Political Economy, Scottish Economic Society, vol. 48(2), pages 179-195, May.
    11. Moolman, Elna, 2004. "A Markov switching regime model of the South African business cycle," Economic Modelling, Elsevier, vol. 21(4), pages 631-646, July.
    12. Terence C. Mills & Ping Wang, 2003. "Multivariate Markov Switching Common Factor Models for the UK," Bulletin of Economic Research, Wiley Blackwell, vol. 55(2), pages 177-193, April.
    13. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    14. Francis X. Diebold & Glenn D. Rudebusch, 2001. "Five questions about business cycles," Economic Review, Federal Reserve Bank of San Francisco, pages 1-15.
    15. Sensier, Marianne & Artis, Michael & Osborn, Denise R. & Birchenhall, Chris, 2004. "Domestic and international influences on business cycle regimes in Europe," International Journal of Forecasting, Elsevier, vol. 20(2), pages 343-357.
    16. Chang-Jin Kim & Chris Murray, 1999. "Permanent and Transitory Nature of Recessions," Discussion Papers in Economics at the University of Washington 0041, Department of Economics at the University of Washington.
    17. Abdullah Tahir & Jameel Ahmed & Waqas Ahmed, 2018. "Robust Quarterization of GDP and Determination of Business Cycle Dates for IGC Partner Countries," SBP Working Paper Series 97, State Bank of Pakistan, Research Department.
    18. Ozdemir Dicle, 2020. "Time-Varying Housing Market Fluctuations: Evidence from the U.S. Housing Market," Real Estate Management and Valuation, Sciendo, vol. 28(2), pages 89-99, June.
    19. Clements, Michael P & Krolzig, Hans-Martin, 2003. "Business Cycle Asymmetries: Characterization and Testing Based on Markov-Switching Autoregressions," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 196-211, January.
    20. Fernando N. de Oliveira, 2015. "Financial and Real Sector Leading Indicators of Recessions in Brazil using Probabilistic Models," Working Papers Series 402, Central Bank of Brazil, Research Department.

    More about this item

    Keywords

    Business Cycle; Feature Extraction; Hidden Markov Switching-Regime Model; Leading Indicator; Probability Forecast.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:hastef:0427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helena Lundin (email available below). General contact details of provider: https://edirc.repec.org/data/erhhsse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.