IDEAS home Printed from https://ideas.repec.org/p/hhs/gunwpe/0116.html
   My bibliography  Save this paper

Technological Opportunities and Growth in the Natural Resource Sector

Author

Listed:
  • Lundström, Susanna

    (Sida)

Abstract

Both technological and natural resource possibilities seem to evolve in cycles. The “Resource Opportunity Model” in this paper introduces the technological opportunity thinking into natural resource modeling. The natural resource industries’ choice between incremental, complementary innovations, and drastic, breakthrough innovations, will give rise to long-run cycles in the so-called familiar resource stock, which is the amount of natural resources determined by the prevailing paradigm. Incremental innovations will increase the exhaustion of the stock, and drastic innovations will create a new paradigm and, thereby, new technological opportunities and a new stock of familiar resources. Drastic innovations are endogenously affected by the knowledge level and induced either by scarcity of technological opportunities or by scarcity of resources. Generally, increased innovation ability increases the knowledge stock and cumulative income over time, but does not affect the sustainability of the resource stock even though the intensity of the resource cycles increases. However, too low innovation ability might drive the sector into technological stagnation, and resource exhaustion in the long run; and too high innovation ability might drive the sector into extraction stagnation, and resource exhaustion in the short run.

Suggested Citation

  • Lundström, Susanna, 2003. "Technological Opportunities and Growth in the Natural Resource Sector," Working Papers in Economics 116, University of Gothenburg, Department of Economics.
  • Handle: RePEc:hhs:gunwpe:0116
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/2077/2892
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    2. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    3. Olsson, Ola, 2000. "Knowledge as a Set in Idea Space: An Epistemological View on Growth," Journal of Economic Growth, Springer, vol. 5(3), pages 253-275, September.
    4. Juhn, Chinhui & Murphy, Kevin M & Pierce, Brooks, 1993. "Wage Inequality and the Rise in Returns to Skill," Journal of Political Economy, University of Chicago Press, vol. 101(3), pages 410-442, June.
    5. Jovanovic, Boyan & Rob, Rafael, 1990. "Long Waves and Short Waves: Growth through Intensive and Extensive Search," Econometrica, Econometric Society, vol. 58(6), pages 1391-1409, November.
    6. Helpman, Elhanan & Trajtenberg, Manuel, 1994. "A Time to Sow and a Time to Reap: Growth Based on General Purpose Technologies," CEPR Discussion Papers 1080, C.E.P.R. Discussion Papers.
    7. David, Paul A, 1990. "The Dynamo and the Computer: An Historical Perspective on the Modern Productivity Paradox," American Economic Review, American Economic Association, vol. 80(2), pages 355-361, May.
    8. Giovanni Dosi, 2000. "Sources, Procedures, and Microeconomic Effects of Innovation," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 2, pages 63-114, Edward Elgar Publishing.
    9. Boldrin, Michele & Levine, David K., 2001. "Growth Cycles and Market Crashes," Journal of Economic Theory, Elsevier, vol. 96(1-2), pages 13-39, January.
    10. Olsson, Ola, 2001. "Why Does Technology Advance in Cycles?," Working Papers in Economics 38, University of Gothenburg, Department of Economics.
    11. David, Paul A & Wright, Gavin, 1997. "Increasing Returns and the Genesis of American Resource Abundance," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 6(2), pages 203-245, March.
    12. Bresnahan, Timothy F. & Trajtenberg, M., 1995. "General purpose technologies 'Engines of growth'?," Journal of Econometrics, Elsevier, vol. 65(1), pages 83-108, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olsson, Ola, 2001. "Why Does Technology Advance in Cycles?," Working Papers in Economics 38, University of Gothenburg, Department of Economics.
    2. Jakub Growiec & Ingmar Schumacher, 2013. "Technological opportunity, long-run growth, and convergence," Oxford Economic Papers, Oxford University Press, vol. 65(2), pages 323-351, April.
    3. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    4. Giovanni Dosi & Richard Nelson, 2013. "The Evolution of Technologies: An Assessment of the State-of-the-Art," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 3(1), pages 3-46, June.
    5. Zon, Adriaan van & Fortune, Emmanuelle & Kronenberg, Tobias, 2003. "How to Sow and Reap as You Go: a Simple Model of Cyclical Endogenous Growth," Research Memorandum 029, Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT).
    6. Uwe Cantner & Simone Vannuccini, 2012. "A New View of General Purpose Technologies," Jena Economics Research Papers 2012-054, Friedrich-Schiller-University Jena.
    7. Harald Edquist & Magnus Henrekson, 2006. "Technological Breakthroughs and Productivity Growth," Research in Economic History, in: Research in Economic History, pages 1-53, Emerald Group Publishing Limited.
    8. Raiteri, Emilio, 2018. "A time to nourish? Evaluating the impact of public procurement on technological generality through patent data," Research Policy, Elsevier, vol. 47(5), pages 936-952.
    9. Paul David & Gavin Wright, 1999. "Early Twentieth Century Productivity Growth Dynamics: An Inquiry into the Economic History of Our Ignorance," Oxford Economic and Social History Working Papers _033, University of Oxford, Department of Economics.
    10. Hornstein, Andreas & Krusell, Per & Violante, Giovanni L., 2005. "The Effects of Technical Change on Labor Market Inequalities," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 20, pages 1275-1370, Elsevier.
    11. Jan Youtie & Maurizio Iacopetta & Stuart Graham, 2008. "Assessing the nature of nanotechnology: can we uncover an emerging general purpose technology?," The Journal of Technology Transfer, Springer, vol. 33(3), pages 315-329, June.
    12. Jovanovic, Boyan & Rousseau, Peter L., 2005. "General Purpose Technologies," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 18, pages 1181-1224, Elsevier.
    13. Borghans, Lex & ter Weel, Bas, 2007. "The diffusion of computers and the distribution of wages," European Economic Review, Elsevier, vol. 51(3), pages 715-748, April.
    14. Vaal, Albert de & Yetkiner, I. Hakan & Zon, Adriaan van, 2002. "The cyclical advancement of drastic technologies," CCSO Working Papers 200217, University of Groningen, CCSO Centre for Economic Research.
    15. Philippe Aghion & Peter Howitt, 1999. "On the Macroeconomic Effects of Major Technological Change," Nordic Journal of Political Economy, Nordic Journal of Political Economy, vol. 25, pages 15-32.
    16. Sandro Sapio & Grid Thoma, 2006. "The Growth of Industrial Sectors: Theoretical Insights and Empirical Evidence from U.S. Manufacturing," LEM Papers Series 2006/09, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    17. J. Klinger & J. Mateos-Garcia & K. Stathoulopoulos, 2018. "Deep learning, deep change? Mapping the development of the Artificial Intelligence General Purpose Technology," Papers 1808.06355, arXiv.org.
    18. Paul A. David & Gavin Wright, 1999. "Early Twentieth Century Productivity Growth Dynamics: An Inquiry into the Economic History of "Our Ignorance"," Oxford University Economic and Social History Series _033, Economics Group, Nuffield College, University of Oxford.
    19. Nikulainen, Tuomo, 2007. "Identifying Nanotechnological Linkages in the Finnish Economy - An Explorative Study," Discussion Papers 1101, The Research Institute of the Finnish Economy.
    20. Alexander Kopka & Dirk Fornahl, 2024. "Artificial intelligence and firm growth — catch-up processes of SMEs through integrating AI into their knowledge bases," Small Business Economics, Springer, vol. 62(1), pages 63-85, January.

    More about this item

    Keywords

    Cycles; Economic growth; Induced innovations; Natural resources; Paradigm shifts; Technological opportunities;
    All these keywords.

    JEL classification:

    • N50 - Economic History - - Agriculture, Natural Resources, Environment and Extractive Industries - - - General, International, or Comparative
    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • Q30 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - General
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:gunwpe:0116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jessica Oscarsson (email available below). General contact details of provider: https://edirc.repec.org/data/naiguse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.