IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v17y1999i2p217-35.html
   My bibliography  Save this article

Testing for Smooth Transition Nonlinearity in the Presence of Outliers

Author

Listed:
  • Van Dijk, Dick
  • Franses, Philip Hans
  • Lucas, Andre

Abstract

Regime-switching models, like the smooth transition autoregressive (STAR) model, are typically applied to time series of moderate length. Hence, the nonlinear features that these models intend to describe may be reflected in only a few observations. Conversely, neglected outliers in a linear time series of moderate length may incorrectly suggest STAR (or other) type(s of) nonlinearity. In this article, the authors propose outlier robust tests for STAR-type nonlinearity. These tests are designed such that they have a better level and power behavior than standard nonrobust tests in situations with outliers. They formally derive local and global robustness properties of the new tests. Extensive Monte Carlo simulations show the practical usefulness of the robust tests. An application to several quarterly industrial production indexes illustrates that apparent nonlinearity in time series sometimes seems due to only a few outliers.

Suggested Citation

  • Van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for Smooth Transition Nonlinearity in the Presence of Outliers," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(2), pages 217-235, April.
  • Handle: RePEc:bes:jnlbes:v:17:y:1999:i:2:p:217-35
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richard J. Smith & Timo Terasvirta, 1991. "Testing Linearity of Economic Time Series against Cyclical Asymmetry," Annals of Economics and Statistics, GENES, issue 20-21, pages 125-142.
    2. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 119-136, Suppl. De.
    3. repec:adr:anecst:y:1991:i:20-21:p:06 is not listed on IDEAS
    4. Balke, Nathan S & Fomby, Thomas B, 1994. "Large Shocks, Small Shocks, and Economic Fluctuations: Outliers in Macroeconomic Time Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 9(2), pages 181-200, April-Jun.
    5. Peracchi, Franco, 1991. "Robust M-Tests," Econometric Theory, Cambridge University Press, vol. 7(1), pages 69-84, March.
    6. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
    7. Hoek, Henk & Lucas, Andre & van Dijk, Herman K., 1995. "Classical and Bayesian aspects of robust unit root inference," Journal of Econometrics, Elsevier, vol. 69(1), pages 27-59, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlo Altavilla & Matteo Ciccarelli, 2006. "Inflation Forecasts, Monetary Policy and Unemployment Dynamics: Evidence from the US and the Euro Area," Discussion Papers 7_2006, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
    2. Luiz Lima & Jaime de Jesus Filho, 2008. "Further investigation of the uncertain trend in US GDP," Applied Economics, Taylor & Francis Journals, vol. 40(9), pages 1207-1216.
    3. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
    4. R. Inglesi-Lotz & A. Hakimi & A. Pouris, 2018. "Patents vs publications and R&D: three sides of the same coin? Panel Smooth Transition Regression (PSTR) for OECD and BRICS countries," Applied Economics, Taylor & Francis Journals, vol. 50(45), pages 4912-4923, September.
    5. Álvaro Escribano & Oscar Jordá, 2001. "Testing nonlinearity: Decision rules for selecting between logistic and exponential STAR models," Spanish Economic Review, Springer;Spanish Economic Association, vol. 3(3), pages 193-209.
    6. Wang, Rudan & Morley, Bruce & Stamatogiannis, Michalis P., 2019. "Forecasting the exchange rate using nonlinear Taylor rule based models," International Journal of Forecasting, Elsevier, vol. 35(2), pages 429-442.
    7. Singh, Tarlok, 2014. "On the regime-switching and asymmetric dynamics of economic growth in the OECD countries," Research in Economics, Elsevier, vol. 68(2), pages 169-192.
    8. Rossen Anja, 2016. "On the Predictive Content of Nonlinear Transformations of Lagged Autoregression Residuals and Time Series Observations," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(3), pages 389-409, May.
    9. Mei-Se Chien, 2013. "The Non-linear Ripple Effect of Housing Prices in Taiwan: A Smooth Transition Regressive Model," ERES eres2013_51, European Real Estate Society (ERES).
    10. Param Silvapulle & Titi Kanti Lestari & Jae Kim, 2004. "Nonlinear Modelling of Purchasing Power Parity in Indonesia," Econometric Society 2004 Australasian Meetings 316, Econometric Society.
    11. Hamdi, Helmi & Hakimi, Abdelaziz, 2019. "Does Liquidity Matter on Bank Profitability? Evidence from a Nonlinear Framework for a Large Sample," Business and Economics Research Journal, Uludag University, Faculty of Economics and Administrative Sciences, vol. 10(1), pages 13-26, January.
    12. Balcilar, Mehmet & Ozdemir, Zeynel Abidin & Ozdemir, Huseyin & Wohar, Mark E., 2020. "Fed’s unconventional monetary policy and risk spillover in the US financial markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 78(C), pages 42-52.
    13. Dijk, Dick van & Franses, Philip Hans, 1999. "Modeling Multiple Regimes in the Business Cycle," Macroeconomic Dynamics, Cambridge University Press, vol. 3(3), pages 311-340, September.
    14. Gregoriou, Andros & Kontonikas, Alexandros, 2009. "Modeling the behaviour of inflation deviations from the target," Economic Modelling, Elsevier, vol. 26(1), pages 90-95, January.
    15. Christos Avdoulas & Stelios Bekiros & Sabri Boubaker, 2018. "Evolutionary-based return forecasting with nonlinear STAR models: evidence from the Eurozone peripheral stock markets," Annals of Operations Research, Springer, vol. 262(2), pages 307-333, March.
    16. Nektarios Aslanidis & Susana Iranzo, 2009. "Environment and development: is there a Kuznets curve for CO2 emissions?," Applied Economics, Taylor & Francis Journals, vol. 41(6), pages 803-810.
    17. Skalin, Joakim & Terasvirta, Timo, 1999. "Another Look at Swedish Business Cycles, 1861-1988," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(4), pages 359-378, July-Aug..
    18. Charles, Amélie & Darné, Olivier, 2012. "Trends and random walks in macroeconomic time series: A reappraisal," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 167-180.
    19. Liew Khim Sen & Ahmad Zubaidi Baharumshah, 2003. "How Well the Ringgit-Yen Rate Fits the Non-linear Smooth Transition Autoregressive and Linear Autoregressive Models," GE, Growth, Math methods 0307004, University Library of Munich, Germany.
    20. Arghyrou, Michael G. & Gadea, Maria Dolores, 2012. "The single monetary policy and domestic macro-fundamentals: Evidence from Spain," Journal of Policy Modeling, Elsevier, vol. 34(1), pages 16-34.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:17:y:1999:i:2:p:217-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.