IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/halshs-03676670.html
   My bibliography  Save this paper

Why and when coalitions split? An alternative analytical approach with an application to environmental agreements

Author

Listed:
  • Raouf Boucekkine

    (ESC Rennes School of Business - ESC [Rennes] - ESC Rennes School of Business)

  • Carmen Camacho

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, PJSE - Paris Jourdan Sciences Economiques - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Weihua Ruan

    (Purdue University [West Lafayette])

  • Benteng Zou

    (uni.lu - Université du Luxembourg = University of Luxembourg = Universität Luxemburg)

Abstract

We use a parsimonious two-stage differential game setting where the duration of the first stage, the coalition stage, depends on the will of a particular player to leave the coalition through an explicit timing variable. By specializing in a standard linear-quadratic environmental model augmented with a minimal constitutional setting for the coalition (payoff share parameter), we are able to analytically extract several nontrivial findings. Three key aspects drive the results: the technological gap as an indicator of heterogeneity across players, the constitution of the coalition and the intensity of the public bad (here, the pollution damage). We provide with a full analytical solution to the two-stage differential game. In particular, we characterize the intermediate parametric cases leading to optimal finite time splitting. A key characteristic of these finite-time-lived coalitions is the requirement of the payoff share accruing to the splitting country to be large enough. Incidentally, our two-stage differential game setting reaches the conclusion that splitting countries are precisely those which use to benefit the most from the coalition. Constraining the payoff share to be low by Constitution may lead to optimal everlasting coalitions only provided initial pollution is high enough, which may cover the emergency cases we are witnessing nowadays.

Suggested Citation

  • Raouf Boucekkine & Carmen Camacho & Weihua Ruan & Benteng Zou, 2022. "Why and when coalitions split? An alternative analytical approach with an application to environmental agreements," Working Papers halshs-03676670, HAL.
  • Handle: RePEc:hal:wpaper:halshs-03676670
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-03676670v1
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-03676670v1/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Boucekkine, R. & Pommeret, A. & Prieur, F., 2013. "Optimal regime switching and threshold effects," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2979-2997.
    2. Raouf Boucekkine & Carmen Camacho & Benteng Zou, 2020. "Optimal switching from competition to cooperation: a preliminary exploration," PSE Working Papers halshs-02434786, HAL.
    3. Marco Battaglini & Bård Harstad, 2016. "Participation and Duration of Environmental Agreements," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 160-204.
    4. María C. Latorre & Zoryana Olekseyuk & Hidemichi Yonezawa, 2020. "Trade and foreign direct investment‐related impacts of Brexit," The World Economy, Wiley Blackwell, vol. 43(1), pages 2-32, January.
    5. Zampolli, Fabrizio, 2006. "Optimal monetary policy in a regime-switching economy: The response to abrupt shifts in exchange rate dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1527-1567.
    6. Bard Harstad, 2012. "Climate Contracts: A Game of Emissions, Investments, Negotiations, and Renegotiations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(4), pages 1527-1557.
    7. Thierry Bréchet & François Gerard & Henry Tulkens, 2011. "Efficiency vs. Stability in Climate Coalitions: A Conceptual and Computational Appraisal," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 49-76.
    8. Calvo, Emilio & Rubio, Santiago J., 2013. "Dynamic Models of International Environmental Agreements: A Differential Game Approach," International Review of Environmental and Resource Economics, now publishers, vol. 6(4), pages 289-339, April.
    9. Thomas Sampson, 2017. "Brexit: The Economics of International Disintegration," Journal of Economic Perspectives, American Economic Association, vol. 31(4), pages 163-184, Fall.
    10. TULKENS, Henry, 1998. "Cooperation versus free-riding in international environmental affairs: two approaches," LIDAM Reprints CORE 1339, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Nong, Duy & Siriwardana, Mahinda, 2018. "Effects on the U.S. economy of its proposed withdrawal from the Paris Agreement: A quantitative assessment," Energy, Elsevier, vol. 159(C), pages 621-629.
    12. Hoel, Michael, 1993. "Intertemporal properties of an international carbon tax," Resource and Energy Economics, Elsevier, vol. 15(1), pages 51-70, March.
    13. Dockner Engelbert J. & Van Long Ngo, 1993. "International Pollution Control: Cooperative versus Noncooperative Strategies," Journal of Environmental Economics and Management, Elsevier, vol. 25(1), pages 13-29, July.
    14. Bertinelli, Luisito & Camacho, Carmen & Zou, Benteng, 2014. "Carbon capture and storage and transboundary pollution: A differential game approach," European Journal of Operational Research, Elsevier, vol. 237(2), pages 721-728.
    15. Carraro, Carlo & Buchner, Barbara & Cersosimo, Igor, 2002. "On the Consequences of the US Withdrawal from the Kyoto/Bonn Protocol," CEPR Discussion Papers 3239, C.E.P.R. Discussion Papers.
    16. Carraro, Carlo & Siniscalco, Domenico, 1993. "Strategies for the international protection of the environment," Journal of Public Economics, Elsevier, vol. 52(3), pages 309-328, October.
    17. Dutta, Prajit K. & Radner, Roy, 2009. "A strategic analysis of global warming: Theory and some numbers," Journal of Economic Behavior & Organization, Elsevier, vol. 71(2), pages 187-209, August.
    18. Barbara Buchner & Carlo Carraro & Igor Cersosimo, 2002. "Economic consequences of the US withdrawal from the Kyoto/Bonn Protocol," Climate Policy, Taylor & Francis Journals, vol. 2(4), pages 273-292, December.
    19. Tahvonen, Olli, 1994. "Carbon dioxide abatement as a differential game," European Journal of Political Economy, Elsevier, vol. 10(4), pages 685-705, December.
    20. Raouf Boucekkine & Jacek Krawczyk & Thomas Vallée, 2011. "Environmental quality versus economic performance: A dynamic game approach," Post-Print hal-03193660, HAL.
    21. Tomiyama, Ken, 1985. "Two-stage optimal control problems and optimality conditions," Journal of Economic Dynamics and Control, Elsevier, vol. 9(3), pages 317-337, November.
    22. Elke Moser & Andrea Seidl & Gustav Feichtinger, 2014. "History-dependence in production-pollution-trade-off models: a multi-stage approach," Annals of Operations Research, Springer, vol. 222(1), pages 457-481, November.
    23. Dockner,Engelbert J. & Jorgensen,Steffen & Long,Ngo Van & Sorger,Gerhard, 2000. "Differential Games in Economics and Management Science," Cambridge Books, Cambridge University Press, number 9780521637329, September.
    24. Xepapadeas, A., 1995. "Induced technical change and international agreements under greenhouse warming," Resource and Energy Economics, Elsevier, vol. 17(1), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raouf Boucekkine & Carmen Camacho & Weihua Ruan & Benteng Zou, 2022. "Optimal coalition splitting with heterogenous strategies," Working Papers halshs-03770401, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raouf Boucekkine & Carmen Camacho & Weihua Ruan & Benteng Zou, 2022. "Optimal coalition splitting with heterogenous strategies," Working Papers halshs-03770401, HAL.
    2. Boucekkine, Raouf & Ruan, Weihua & Zou, Benteng, 2023. "The irreversible pollution game," Journal of Environmental Economics and Management, Elsevier, vol. 120(C).
    3. Bård Harstad, 2016. "The Dynamics Of Climate Agreements," Journal of the European Economic Association, European Economic Association, vol. 14(3), pages 719-752, June.
    4. Raouf Boucekkine & Carmen Camacho & Benteng Zou, 2020. "Optimal switching from competition to cooperation: a preliminary exploration," Working Papers halshs-02434786, HAL.
    5. Holtsmark, Katinka & Midttømme, Kristoffer, 2021. "The dynamics of linking permit markets," Journal of Public Economics, Elsevier, vol. 198(C).
    6. Hans Gersbach & Noemi Hummel & Ralph Winkler, 2021. "Long-Term Climate Treaties with a Refunding Club," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(3), pages 511-552, November.
    7. Yiwen Chen & Nora Paulus & Xi Wan & Benteng Zou, 2024. "To Deploy or Not to Deploy CCS Abatement, and When : A Differential Game Perspective," DEM Discussion Paper Series 24-07, Department of Economics at the University of Luxembourg.
    8. Calvo, Emilio & Rubio, Santiago J., 2013. "Dynamic Models of International Environmental Agreements: A Differential Game Approach," International Review of Environmental and Resource Economics, now publishers, vol. 6(4), pages 289-339, April.
    9. Mason, Charles F. & Polasky, Stephen & Tarui, Nori, 2017. "Cooperation on climate-change mitigation," European Economic Review, Elsevier, vol. 99(C), pages 43-55.
    10. Meléndez-Jiménez, Miguel A. & Polanski, Arnold, 2020. "Dirty neighbors — Pollution in an interlinked world," Energy Economics, Elsevier, vol. 86(C).
    11. Harstad, Bård, 2023. "Pledge-and-review bargaining," Journal of Economic Theory, Elsevier, vol. 207(C).
    12. Yutao Han & Zhen Song, 2022. "On regional integration, fiscal income, and GDP per capita," Scottish Journal of Political Economy, Scottish Economic Society, vol. 69(5), pages 506-532, November.
    13. Sudhir A. Shah, 2006. "A Non-Cooperative Theory Of Quantity-Rationing International Transfrontier Pollution," Working papers 143, Centre for Development Economics, Delhi School of Economics.
    14. Santiago J. Rubio, 2001. "International Cooperation In Pollution Control," Working Papers. Serie AD 2001-21, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    15. Carlo Carraro, 2014. "International environmental cooperation," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 26, pages 418-431, Edward Elgar Publishing.
    16. Açıkgöz, Ömer T. & Benchekroun, Hassan, 2017. "Anticipated international environmental agreements," European Economic Review, Elsevier, vol. 92(C), pages 306-336.
    17. Niko Jaakkola & Florian Wagener, 2020. "All symmetric equilibria in differential games with public goods," Tinbergen Institute Discussion Papers 20-020/II, Tinbergen Institute.
    18. Miguel Borrero & Santiago J. Rubio, 2022. "An adaptation-mitigation game: does adaptation promote participation in international environmental agreements?," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 22(3), pages 439-479, September.
    19. Wenguang Tang & Shuhua Zhang, 2019. "Modeling and Computation of Transboundary Pollution Game Based on Joint Implementation Mechanism," Complexity, Hindawi, vol. 2019, pages 1-18, August.
    20. N. Baris Vardar & Georges Zaccour, 2020. "Exploitation of a Productive Asset in the Presence of Strategic Behavior and Pollution Externalities," Mathematics, MDPI, vol. 8(10), pages 1-28, October.

    More about this item

    Keywords

    Coalition splitting; Constitutional vs technological heterogeneity; Environmental agreements; Multistage optimal control Coalition splitting; Differential games;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-03676670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.