IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04057045.html
   My bibliography  Save this paper

Hedging Valuation Adjustment for Callable Claims

Author

Listed:
  • Cyril Bénézet

    (LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise)

  • Stéphane Crépey

    (LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité, UPCité - Université Paris Cité)

  • Dounia Essaket

    (LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité, UPCité - Université Paris Cité)

Abstract

In this work, we extend to callable assets the model risk approach of Bénézet and Crépey (2024), itself leveraging on the notion of hedging valuation adjustment initially introduced for dealing with transaction costs in Burnett (2021) & Burnett and Williams (2021). The classical way to deal with model risk is to reserve the differences between the valuations in reference models and in the local models used by traders. However, while traders' prices are thus corrected, their hedging strategies and their exercise decisions are still wrong, which necessitates a risk-adjusted reserve. We illustrate our approach on a stylized callable range accrual representative of huge amounts of structured products on the market. We show that a model risk reserve adjusted for the risk of wrong exercise decisions may largely exceed a basic reserve only accounting for valuation differences.

Suggested Citation

  • Cyril Bénézet & Stéphane Crépey & Dounia Essaket, 2025. "Hedging Valuation Adjustment for Callable Claims," Working Papers hal-04057045, HAL.
  • Handle: RePEc:hal:wpaper:hal-04057045
    DOI: 10.48550/arXiv.2304.02479
    Note: View the original document on HAL open archive server: https://hal.science/hal-04057045v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04057045v2/document
    Download Restriction: no

    File URL: https://libkey.io/10.48550/arXiv.2304.02479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Claudio Albanese & Stéphane Crépey & Stefano Iabichino, 2021. "A Darwinian Theory of Model Risk," Post-Print hal-03910130, HAL.
    2. Nicole El Karoui & Monique Jeanblanc‐Picquè & Steven E. Shreve, 1998. "Robustness of the Black and Scholes Formula," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 93-126, April.
    3. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    4. Cyril B'en'ezet & St'ephane Cr'epey, 2022. "Handling model risk with XVAs," Papers 2205.11834, arXiv.org, revised Aug 2024.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cyril B'en'ezet & St'ephane Cr'epey & Dounia Essaket, 2023. "Hedging Valuation Adjustment for Callable Claims," Papers 2304.02479, arXiv.org, revised Feb 2025.
    2. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, September.
    3. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    4. Pietro Siorpaes, 2015. "Optimal investment and price dependence in a semi-static market," Finance and Stochastics, Springer, vol. 19(1), pages 161-187, January.
    5. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    6. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    7. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    8. Chen An & Mahayni Antje B., 2008. "Endowment Assurance Products: Effectiveness of Risk-Minimizing Strategies under Model Risk," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(2), pages 1-29, March.
    9. Bernardi, Mauro, 2013. "Risk measures for skew normal mixtures," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1819-1824.
    10. Maria Logvaneva & Mikhail Tselishchev, 2022. "On a Stochastic Model of Diversification," Papers 2204.01284, arXiv.org.
    11. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
    12. Csóka Péter & Pintér Miklós, 2016. "On the Impossibility of Fair Risk Allocation," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 16(1), pages 143-158, January.
    13. Timo Dimitriadis & iaochun Liu & Julie Schnaitmann, 2023. "Encompassing Tests for Value at Risk and Expected Shortfall Multistep Forecasts Based on Inference on the Boundary," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 412-444.
    14. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.
    15. Haitham M. Yousof & Yusra Tashkandy & Walid Emam & M. Masoom Ali & Mohamed Ibrahim, 2023. "A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    16. Csóka, Péter, 2017. "Fair risk allocation in illiquid markets," Finance Research Letters, Elsevier, vol. 21(C), pages 228-234.
    17. Yun Feng & Weijie Hou & Yuping Song, 2024. "Tail risk forecasting and its application to margin requirements in the commodity futures market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1513-1529, August.
    18. Fermanian, Jean-David & Scaillet, Olivier, 2005. "Sensitivity analysis of VaR and Expected Shortfall for portfolios under netting agreements," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 927-958, April.
    19. Koch-Medina, Pablo & Munari, Cosimo, 2016. "Unexpected shortfalls of Expected Shortfall: Extreme default profiles and regulatory arbitrage," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 141-151.
    20. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04057045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.