Data-driven Structural Modeling of Electricity Price Dynamics
Author
Abstract
Suggested Citation
Note: View the original document on HAL open archive server: https://hal.science/hal-03445396
Download full text from publisher
References listed on IDEAS
- Florian Ziel & Rick Steinert, 2015. "Electricity Price Forecasting using Sale and Purchase Curves: The X-Model," Papers 1509.00372, arXiv.org, revised Aug 2016.
- Deng, S.J. & Oren, S.S., 2006. "Electricity derivatives and risk management," Energy, Elsevier, vol. 31(6), pages 940-953.
- Hirth, Lion & Mühlenpfordt, Jonathan & Bulkeley, Marisa, 2018. "The ENTSO-E Transparency Platform – A review of Europe’s most ambitious electricity data platform," Applied Energy, Elsevier, vol. 225(C), pages 1054-1067.
- Wiese, Frauke & Schlecht, Ingmar & Bunke, Wolf-Dieter & Gerbaulet, Clemens & Hirth, Lion & Jahn, Martin & Kunz, Friedrich & Lorenz, Casimir & Mühlenpfordt, Jonathan & Reimann, Juliane & Schill, Wolf-P, 2019.
"Open Power System Data – Frictionless data for electricity system modelling,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 236, pages 401-409.
- Wiese, Frauke & Schlecht, Ingmar & Bunke, Wolf-Dieter & Gerbaulet, Clemens & Hirth, Lion & Jahn, Martin & Kunz, Friedrich & Lorenz, Casimir & Mühlenpfordt, Jonathan & Reimann, Juliane & Schill, Wolf-P, 2019. "Open Power System Data – Frictionless data for electricity system modelling," Applied Energy, Elsevier, vol. 236(C), pages 401-409.
- Mayer, Klaus & Trück, Stefan, 2018. "Electricity markets around the world," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 77-100.
- Sergei Kulakov, 2020. "X-Model: Further Development and Possible Modifications," Forecasting, MDPI, vol. 2(1), pages 1-16, February.
- repec:dau:papers:123456789/11500 is not listed on IDEAS
- Abujarad, Saleh Y. & Mustafa, M.W. & Jamian, J.J., 2017. "Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 215-223.
- Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
- Ward, K.R. & Green, R. & Staffell, I., 2019. "Getting prices right in structural electricity market models," Energy Policy, Elsevier, vol. 129(C), pages 1190-1206.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Ziel, Florian & Steinert, Rick, 2018. "Probabilistic mid- and long-term electricity price forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 251-266.
- Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
- Gross, Robert & Blyth, William & Heptonstall, Philip, 2010. "Risks, revenues and investment in electricity generation: Why policy needs to look beyond costs," Energy Economics, Elsevier, vol. 32(4), pages 796-804, July.
- Beran, Philip & Pape, Christian & Weber, Christoph, 2019. "Modelling German electricity wholesale spot prices with a parsimonious fundamental model – Validation & application," Utilities Policy, Elsevier, vol. 58(C), pages 27-39.
- Ziel, Florian & Steinert, Rick, 2016. "Electricity price forecasting using sale and purchase curves: The X-Model," Energy Economics, Elsevier, vol. 59(C), pages 435-454.
- Florian Ziel & Rick Steinert, 2017. "Probabilistic Mid- and Long-Term Electricity Price Forecasting," Papers 1703.10806, arXiv.org, revised May 2018.
- Sánchez de la Nieta, A.A. & Contreras, J., 2020. "Quantifying the effect of renewable generation on day–ahead electricity market prices: The Spanish case," Energy Economics, Elsevier, vol. 90(C).
- Alasseur, C. & Féron, O., 2018. "Structural price model for coupled electricity markets," Energy Economics, Elsevier, vol. 75(C), pages 104-119.
- Rene Carmona & Michael Coulon & Daniel Schwarz, 2012. "Electricity price modeling and asset valuation: a multi-fuel structural approach," Papers 1205.2299, arXiv.org.
- Parkinson, Thomas W., 2004. "Market Price Risks of Merchant Generation," The Electricity Journal, Elsevier, vol. 17(4), pages 33-48, May.
- Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mahler, Valentin & Girard, Robin & Kariniotakis, Georges, 2022. "Data-driven structural modeling of electricity price dynamics," Energy Economics, Elsevier, vol. 107(C).
- Philip Beran & Arne Vogler, 2021. "Multi-Day-Ahead Electricity Price Forecasting: A Comparison of fundamental, econometric and hybrid Models," EWL Working Papers 2102, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Oct 2021.
- Ethem Çanakoğlu & Esra Adıyeke, 2020. "Comparison of Electricity Spot Price Modelling and Risk Management Applications," Energies, MDPI, vol. 13(18), pages 1-22, September.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Micha{l} Narajewski & Florian Ziel, 2021. "Optimal bidding in hourly and quarter-hourly electricity price auctions: trading large volumes of power with market impact and transaction costs," Papers 2104.14204, arXiv.org, revised Feb 2022.
- Rafal Weron & Florian Ziel, 2018.
"Electricity price forecasting,"
HSC Research Reports
HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Katarzyna Maciejowska & Rafal Weron, 2019. "Electricity price forecasting," HSC Research Reports HSC/19/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Qiao, Weibiao & Yang, Zhe, 2020. "Forecast the electricity price of U.S. using a wavelet transform-based hybrid model," Energy, Elsevier, vol. 193(C).
- Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
- Narajewski, Michał & Ziel, Florian, 2022. "Optimal bidding in hourly and quarter-hourly electricity price auctions: Trading large volumes of power with market impact and transaction costs," Energy Economics, Elsevier, vol. 110(C).
- Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
- Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
- Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021.
"Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark,"
Applied Energy, Elsevier, vol. 293(C).
- Jesus Lago & Grzegorz Marcjasz & Bart De Schutter & Rafa{l} Weron, 2020. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Papers 2008.08004, arXiv.org, revised Dec 2020.
- Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023.
"Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
- Kin G. Olivares & Cristian Challu & Grzegorz Marcjasz & Rafal Weron & Artur Dubrawski, 2021. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," WORking papers in Management Science (WORMS) WORMS/21/07, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Ilkay Oksuz & Umut Ugurlu, 2019. "Neural Network Based Model Comparison for Intraday Electricity Price Forecasting," Energies, MDPI, vol. 12(23), pages 1-14, November.
- Stephen Haben & Julien Caudron & Jake Verma, 2021. "Probabilistic Day-Ahead Wholesale Price Forecast: A Case Study in Great Britain," Forecasting, MDPI, vol. 3(3), pages 1-37, August.
- Gunnhildur H. Steinbakk & Alex Lenkoski & Ragnar Bang Huseby & Anders L{o}land & Tor Arne {O}ig{aa}rd, 2018. "Using published bid/ask curves to error dress spot electricity price forecasts," Papers 1812.02433, arXiv.org.
- Tomasz Serafin & Bartosz Uniejewski & Rafał Weron, 2019.
"Averaging Predictive Distributions Across Calibration Windows for Day-Ahead Electricity Price Forecasting,"
Energies, MDPI, vol. 12(13), pages 1-12, July.
- Tomasz Serafin & Bartosz Uniejewski & Rafal Weron, 2019. "Averaging predictive distributions across calibration windows for day-ahead electricity price forecasting," WORking papers in Management Science (WORMS) WORMS/19/08, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology, revised 06 Jul 2019.
- Tschora, Léonard & Pierre, Erwan & Plantevit, Marc & Robardet, Céline, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Applied Energy, Elsevier, vol. 313(C).
- Sergei Kulakov, 2020. "X-Model: Further Development and Possible Modifications," Forecasting, MDPI, vol. 2(1), pages 1-16, February.
- Léonard Tschora & Erwan Pierre & Marc Plantevit & Céline Robardet, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Post-Print hal-03621974, HAL.
More about this item
Keywords
Day-ahead markets; Electricity prices; Structural market model; Prospective studies; Power systems;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENE-2022-01-10 (Energy Economics)
- NEP-REG-2022-01-10 (Regulation)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-03445396. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.