IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-02972885.html
   My bibliography  Save this paper

Dynamiques de consommation dans la crise : les enseignements en temps réel des données bancaires

Author

Listed:
  • David Bounie

    (IP Paris - Institut Polytechnique de Paris, ECOGE - Economie Gestion - I3 SES - Institut interdisciplinaire de l’innovation de Telecom Paris - Télécom Paris - IMT - Institut Mines-Télécom [Paris] - IP Paris - Institut Polytechnique de Paris - I3 - Institut interdisciplinaire de l’innovation - CNRS - Centre National de la Recherche Scientifique, SES - Département Sciences Economiques et Sociales - Télécom Paris - IMT - Institut Mines-Télécom [Paris] - IP Paris - Institut Polytechnique de Paris)

  • Youssouf Camara

    (Télécom ParisTech)

  • Etienne Fize

    (Institut d'Études Politiques [IEP] - Paris, CAE - Conseil d'analyse économique)

  • John Galbraith

    (McGill University = Université McGill [Montréal, Canada])

  • Camille Landais

    (LSE - London School of Economics and Political Science)

  • Chloé Lavest

    (CAE - Conseil d'analyse économique)

  • Tatiana Pazem

    (LSE - London School of Economics and Political Science)

  • Baptiste Savatier

    (CAE - Conseil d'analyse économique)

Abstract

Le contexte inédit de la crise sanitaire a renforcé le besoin de mobiliser des sources de données « en temps réel », c'est‐à‐dire très rapidement disponibles, suffisamment représentatives et détaillées afin de pouvoir décrire les hétérogénéités des situations durant la crise. À ce titre, les données bancaires sont particulièrement riches. Grâce à des partenariats noués entre le CAE et le Groupement des Cartes Bancaires CB, Télécom Paris (dans le cadre de la Chaire « Finance Digitale » placée sous l'égide de la Fondation du Risque en partenariat avec le Groupement Cartes Bancaires CB, Telecom ParisTech et l'Université Panthéon‐Assas), et Crédit Mutuel Alliance Fédérale, que nous remercions tous ,un travail de recherche original a été rendu possible en s'appuyant sur ces données. L'accès à ces données agrégées et strictement anonymisées s'est effectué dans une procédure sécurisée (voir encadré). Les données de transactions par cartes bancaires permettent de construire un baromètre de la consommation des ménages puisqu'elles en couvrent environ 60 % (hors charges fixes). Elles permettent également de produire des analyses sectorielles et géographiques et des hétérogénéités entre les ménages. Les données de comptes bancaires Crédit Mutuel Alliance Fédérale, sur la base d'un échantillon de 300 000 ménages strictement anonymisés, permettent d'aller plus loin dans l'analyse en disposant d'informations sur les dépenses des ménages (achats par cartes bancaires, retraits d'espèces, chèques et prélèvements) et sur les soldes des comptes (compte courant, compte d'épargne, compte titre, assurance vie, crédits). Avec de telles données, il est ainsi possible notamment d'étudier la dynamique de l'épargne globale, et selon différentes catégories de ménages.

Suggested Citation

  • David Bounie & Youssouf Camara & Etienne Fize & John Galbraith & Camille Landais & Chloé Lavest & Tatiana Pazem & Baptiste Savatier, 2020. "Dynamiques de consommation dans la crise : les enseignements en temps réel des données bancaires," Working Papers hal-02972885, HAL.
  • Handle: RePEc:hal:wpaper:hal-02972885
    Note: View the original document on HAL open archive server: https://hal.science/hal-02972885v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02972885v1/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Bounie & Youssouf Camara & John Galbraith, 2020. "Consumers’ Mobility, Expenditure and Online-Offline Substitution Response to COVID-19: Evidence from French Transaction Data," Cahiers de recherche 14-2020, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    2. Eika, Lasse & Mogstad, Magne & Vestad, Ola L., 2020. "What can we learn about household consumption expenditure from data on income and assets?," Journal of Public Economics, Elsevier, vol. 189(C).
    3. Asger Lau Andersen & Emil Toft Hansen & Niels Johannesen & Adam Sheridan, 2022. "Consumer responses to the COVID‐19 crisis: evidence from bank account transaction data," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(4), pages 905-929, October.
    4. Scott R Baker & Robert A Farrokhnia & Steffen Meyer & Michaela Pagel & Constantine Yannelis & Jeffrey Pontiff, 0. "How Does Household Spending Respond to an Epidemic? Consumption during the 2020 COVID-19 Pandemic," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 10(4), pages 834-862.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Or, Zeynep & Gandré, Coralie & Durand Zaleski, Isabelle & Steffen, Monika, 2022. "France's response to the Covid-19 pandemic: between a rock and a hard place," Health Economics, Policy and Law, Cambridge University Press, vol. 17(1), pages 14-26, January.
    2. Baddou Saïda & Jérôme Coffinet & Cécile Fraysse & Stéphane Jarrijon, 2021. "The French life insurance market during the health crisis [Le marché de l’assurance-vie en France pendant la crise sanitaire]," Bulletin de la Banque de France, Banque de France, issue 238.
    3. Julien Albertini & Xavier Fairise & Arthur Poirier & Anthony Terriau, 2022. "Short-Time Work Policies During the Covid-19 Pandemic," Annals of Economics and Statistics, GENES, issue 146, pages 123-172.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Gathergood & Fabian Gunzinger & Benedict Guttman-Kenney & Edika Quispe-Torreblanca & Neil Stewart, 2020. "Levelling Down and the COVID-19 Lockdowns: Uneven Regional Recovery in UK Consumer Spending," Papers 2012.09336, arXiv.org, revised Dec 2020.
    2. Martin O'Connell & Áureo de Paula & Kate Smith, 2021. "Preparing for a pandemic: spending dynamics and panic buying during the COVID‐19 first wave," Fiscal Studies, John Wiley & Sons, vol. 42(2), pages 249-264, June.
    3. Hacıoğlu-Hoke, Sinem & Känzig, Diego R. & Surico, Paolo, 2021. "The distributional impact of the pandemic," European Economic Review, Elsevier, vol. 134(C).
    4. Horvath, Akos & Kay, Benjamin & Wix, Carlo, 2023. "The COVID-19 shock and consumer credit: Evidence from credit card data," Journal of Banking & Finance, Elsevier, vol. 152(C).
    5. Martin Brown & Matthias R. Fengler & Jonas Huwyler & Winfried Koeniger & Rafael Lalive & Robert Rohrkemper, 2023. "Monitoring consumption Switzerland: data, background, and use cases," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-16, December.
    6. Maximiliano Gómez Aguirre & Ariel David Krysa, 2023. "Consumer Loans Dynamics in 2020 in Argentina: An Approach Using Error Correction Models," Ensayos Económicos, Central Bank of Argentina, Economic Research Department, vol. 1(81), pages 111-158, May.
    7. Scott R. Baker & Robert A Farrokhnia & Steffen Meyer & Michaela Pagel & Constantine Yannelis, 2023. "Income, Liquidity, and the Consumption Response to the 2020 Economic Stimulus Payments," Review of Finance, European Finance Association, vol. 27(6), pages 2271-2304.
    8. Hakan Yilmazkuday, 2021. "Changes in Consumption in the Early COVID-19 Era: Zip-Code Level Evidence from the U.S," JRFM, MDPI, vol. 14(10), pages 1-10, October.
    9. Christelis, Dimitris & Georgarakos, Dimitris & Jappelli, Tullio & Kenny, Geoff, 2021. "How has the COVID-19 crisis affected different households’ consumption in the euro area?," Research Bulletin, European Central Bank, vol. 84.
    10. Pascal Seiler, 2020. "Weighting bias and inflation in the time of COVID-19: evidence from Swiss transaction data," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 156(1), pages 1-11, December.
    11. Mohammad Hoseini & Abolmohsen Valizadeh, 2021. "The effect of COVID-19 lockdown and the subsequent reopening on consumption in Iran," Review of Economics of the Household, Springer, vol. 19(2), pages 373-397, June.
    12. Hansen, Stephen & Carvalho, Vasco & García, Juan Ramón & Ortiz, Alvaro & Rodrigo, Tomasa & Rodríguez Mora, José V & Ruiz, Pep, 2020. "Tracking the COVID-19 Crisis with High-Resolution Transaction Data," CEPR Discussion Papers 14642, C.E.P.R. Discussion Papers.
    13. Ludmila Fadejeva & Boriss Siliverstovs & Karlis Vilerts & Anete Brinke, 2022. "Consumer Spending in the Covid-19 Pandemic: Evidence from Card Transactions in Latvia," Discussion Papers 2022/01, Latvijas Banka.
    14. George, Ammu & Li, Changtai & Lim, Jing Zhi & Xie, Taojun, 2021. "From SARS to COVID-19: The evolving role of China-ASEAN production network," Economic Modelling, Elsevier, vol. 101(C).
    15. Dräger, Lena & Bui, Dzung & Nghiem, Giang & Hayo, Bernd, 2021. "Consumer Sentiment During the COVID-19 Pandemic," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242375, Verein für Socialpolitik / German Economic Association.
    16. Jaravel, Xavier & O'Connell, Martin, 2020. "Real-time price indices: Inflation spike and falling product variety during the Great Lockdown," Journal of Public Economics, Elsevier, vol. 191(C).
    17. Stefanie Stantcheva, 2022. "Inequalities in the times of a pandemic," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 37(109), pages 5-41.
    18. Dzung Bui & Lena Draeger & Bernd Hayo & Giang NghiemŸ, 2020. "Consumer Sentiment During the COVID-19 Pandemic: The Role of Others' Beliefs," MAGKS Papers on Economics 202049, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    19. Hodbod, Alexander & Hommes, Cars & Huber, Stefanie J. & Salle, Isabelle, 2021. "The COVID-19 consumption game-changer: Evidence from a large-scale multi-country survey," European Economic Review, Elsevier, vol. 140(C).
    20. Yothin Jinjarak & Ilan Noy & Quy Ta, 2022. "Pandemics and Economic Growth: Evidence from the 1968 H3N2 Influenza," Economics of Disasters and Climate Change, Springer, vol. 6(1), pages 73-93, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-02972885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.