IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-02490029.html
   My bibliography  Save this paper

Robust Calibration For SVI Model Arbitrage Free

Author

Listed:
  • Tahar Ferhati

    (IMJ - Institut de Mathématiques de Jussieu - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique)

Abstract

The purpose of this paper is to study the Stochastic Volatility Inspired model (SVI) as implied volatility model: we study the analytic part of the SVI with the arbitrage conditions, we establish the initial guess and the parameter's boundaries. Until recently it was not possible to find sufficient conditions that would guarantee an SVI model calibration arbitrage-free. The main contribution in this paper is that we provided a numerical method to resolve the arbitrage problem (butterfly and calendar spread) using the Sequential Least-Squares Quadratic Programming (SLSQP) method. Our method guarantee to get SVI calibration with butterfly and calendar spread arbitrage-free, We provide many numerical examples with arbitrage such as Vogt Axel example and we show how to fix them. The calibration method is tested on 23 equity indexes with 14 maturities each and we get 322 slices fits using the same initial guess and the SVI parameters boundaries for all indexes. This new calibration method is very important and it meets practical need: resolving this arbitrage problem will pave the way to the surface calibration and the transition from implied volatility to local volatility using Dupire's formula, therefore, it allows price different kind of path-dependent options such as barrier options, and American options. The SVI model could also be applied to price interest rate derivatives such as swaptions, interest rate caps, and floors.

Suggested Citation

  • Tahar Ferhati, 2020. "Robust Calibration For SVI Model Arbitrage Free," Working Papers hal-02490029, HAL.
  • Handle: RePEc:hal:wpaper:hal-02490029
    Note: View the original document on HAL open archive server: https://hal.science/hal-02490029v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02490029v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Judith Glaser & Pascal Heider, 2012. "Arbitrage-free approximation of call price surfaces and input data risk," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 61-73, August.
    2. Carr, Peter & Madan, Dilip B., 2005. "A note on sufficient conditions for no arbitrage," Finance Research Letters, Elsevier, vol. 2(3), pages 125-130, September.
    3. Matthias Fengler, 2009. "Arbitrage-free smoothing of the implied volatility surface," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 417-428.
    4. Jim Gatheral & Antoine Jacquier, 2011. "Convergence of Heston to SVI," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1129-1132.
    5. M. Benko & M. Fengler & W. Härdle & M. Kopa, 2007. "On extracting information implied in options," Computational Statistics, Springer, vol. 22(4), pages 543-553, December.
    6. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
    7. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claude Martini & Arianna Mingone, 2020. "No arbitrage SVI," Papers 2005.03340, arXiv.org, revised May 2021.
    2. Navratil, Robert & Taylor, Stephen & Vecer, Jan, 2022. "On the utility maximization of the discrepancy between a perceived and market implied risk neutral distribution," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1215-1229.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahar Ferhati, 2020. "SVI Model Free Wings," Working Papers hal-02517572, HAL.
    2. Jim Gatheral & Antoine Jacquier, 2014. "Arbitrage-free SVI volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
    3. Martin Tegn'er & Stephen Roberts, 2019. "A Probabilistic Approach to Nonparametric Local Volatility," Papers 1901.06021, arXiv.org, revised Jan 2019.
    4. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2024. "A Semi-Closed Form Approximation of Arbitrage-Free Call Option Price Surface," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1431-1457, April.
    5. Itkin, Andrey, 2015. "To sigmoid-based functional description of the volatility smile," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 264-291.
    6. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "Semi-nonparametric estimation of the call-option price surface under strike and time-to-expiry no-arbitrage constraints," Journal of Econometrics, Elsevier, vol. 184(2), pages 242-261.
    7. Mnacho Echenim & Emmanuel Gobet & Anne-Claire Maurice, 2022. "Unbiasing and robustifying implied volatility calibration in a cryptocurrency market with large bid-ask spreads and missing quotes," Papers 2207.02989, arXiv.org.
    8. Florence Guillaume & Wim Schoutens, 2014. "Heston Model: The Variance Swap Calibration," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 76-89, April.
    9. repec:hal:wpaper:hal-03715921 is not listed on IDEAS
    10. Bender Christian & Thiel Matthias, 2020. "Arbitrage-free interpolation of call option prices," Statistics & Risk Modeling, De Gruyter, vol. 37(1-2), pages 55-78, January.
    11. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    12. Michael R. Tehranchi, 2020. "A Black–Scholes inequality: applications and generalisations," Finance and Stochastics, Springer, vol. 24(1), pages 1-38, January.
    13. Kim, Namhyoung & Lee, Jaewook, 2013. "No-arbitrage implied volatility functions: Empirical evidence from KOSPI 200 index options," Journal of Empirical Finance, Elsevier, vol. 21(C), pages 36-53.
    14. Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    15. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2020. "Detecting and repairing arbitrage in traded option prices," Papers 2008.09454, arXiv.org.
    16. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    17. Hirbod Assa & Mostafa Pouralizadeh & Abdolrahim Badamchizadeh, 2019. "Sound Deposit Insurance Pricing Using a Machine Learning Approach," Risks, MDPI, vol. 7(2), pages 1-18, April.
    18. Bo Zhao & Stewart Hodges, 2013. "Parametric modeling of implied smile functions: a generalized SVI model," Review of Derivatives Research, Springer, vol. 16(1), pages 53-77, April.
    19. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    20. Fengler, Matthias & Hin, Lin-Yee, 2011. "Semi-nonparametric estimation of the call price surface under strike and time-to-expiry no-arbitrage constraints," Economics Working Paper Series 1136, University of St. Gallen, School of Economics and Political Science, revised May 2013.
    21. Thomas Mazzoni, 2018. "Asymptotic Expansion of Risk-Neutral Pricing Density," IJFS, MDPI, vol. 6(1), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-02490029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.