IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01719216.html
   My bibliography  Save this paper

Mortality data reliability in an internal model

Author

Listed:
  • Fabrice Balland

    (AXA GRM - AXA Group Risk Management)

  • Alexandre Boumezoued

    (R&D, Milliman, Paris - Milliman France)

  • Laurent Devineau

    (R&D, Milliman, Paris - Milliman France)

  • Marine Habart

    (AXA GRM - AXA Group Risk Management)

  • Tom Popa

    (AXA GRM - AXA Group Risk Management)

Abstract

In this paper, we discuss the impact of some mortality data anomalies on an internal model capturing longevity risk in the Solvency 2 framework. In particular, we are concerned with abnormal cohort effects such as those for generations 1919 and 1920, for which the period tables provided by the Human Mortality Database show particularly low and high mortality rates respectively. To provide corrected tables for the three countries of interest here (France, Italy and West Germany), we use the approach developed by Boumezoued (2016) for countries for which the method applies (France and Italy), and provide an extension of the method for West Germany as monthly fertility histories are not sufficient to cover the generations of interest. These mortality tables are crucial inputs to stochastic mortality models forecasting future scenarios, from which the extreme 0,5% longevity improvement can be extracted, allowing for the calculation of the Solvency Capital Requirement (SCR). More precisely, to assess the impact of such anomalies in the Solvency II framework, we use a simplified internal model based on three usual stochastic models to project mortality rates in the future combined with a closure table methodology for older ages. Correcting this bias obviously improves the data quality of the mortality inputs, which is of paramount importance today, and slightly decreases the capital requirement. Overall, the longevity risk assessment remains stable, as well as the selection of the stochastic mortality model. As a collateral gain of this data quality improvement, the more regular estimated parameters allow for new insights and a refined assessment regarding longevity risk.

Suggested Citation

  • Fabrice Balland & Alexandre Boumezoued & Laurent Devineau & Marine Habart & Tom Popa, 2018. "Mortality data reliability in an internal model," Working Papers hal-01719216, HAL.
  • Handle: RePEc:hal:wpaper:hal-01719216
    Note: View the original document on HAL open archive server: https://hal.science/hal-01719216
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01719216/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew J. G. Cairns & David Blake & Kevin Dowd & Amy R. Kessler, 2016. "Phantoms never die: living with unreliable population data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 975-1005, October.
    2. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    3. S. J. Richards, 2008. "Detecting year‐of‐birth mortality patterns with limited data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 279-298, January.
    4. Dowd, Kevin & Cairns, Andrew J.G. & Blake, David & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2010. "Evaluating the goodness of fit of stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 255-265, December.
    5. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Fabrice Balland & Alexandre Boumezoued & Laurent Devineau & Marine Habart & Tom Popa, 2018. "Mortality data reliability in an internal model," Papers 1803.00464, arXiv.org.
    3. Liu, Yanxin & Li, Johnny Siu-Hang, 2018. "A strategy for hedging risks associated with period and cohort effects using q-forwards," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 267-285.
    4. Paul Doukhan & Joseph Rynkiewicz & Yahia Salhi, 2021. "Optimal Neighborhood Selection for AR-ARCH Random Fields with Application to Mortality," Stats, MDPI, vol. 5(1), pages 1-26, December.
    5. Boumezoued, Alexandre & Elfassihi, Amal, 2021. "Mortality data correction in the absence of monthly fertility records," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 486-508.
    6. Alexandre Boumezoued & Amal Elfassihi, 2020. "Mortality data correction in the absence of monthly fertility records," Working Papers hal-02634631, HAL.
    7. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    8. Anastasia Novokreshchenova, 2016. "Predicting Human Mortality: Quantitative Evaluation of Four Stochastic Models," Risks, MDPI, vol. 4(4), pages 1-28, December.
    9. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    10. F. Peters & J. P. Mackenbach & W. J. Nusselder, 2016. "Does the Impact of the Tobacco Epidemic Explain Structural Changes in the Decline of Mortality?," European Journal of Population, Springer;European Association for Population Studies, vol. 32(5), pages 687-702, December.
    11. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    12. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
    13. Anja De Waegenaere & Bertrand Melenberg & Ralph Stevens, 2010. "Longevity Risk," De Economist, Springer, vol. 158(2), pages 151-192, June.
    14. Carfora, M.F. & Cutillo, L. & Orlando, A., 2017. "A quantitative comparison of stochastic mortality models on Italian population data," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 198-214.
    15. O’Hare, Colin & Li, Youwei, 2012. "Explaining young mortality," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 12-25.
    16. Li, J.S.H. & Ng, A.C.Y. & Chan, W.S., 2013. "Stochastic life table forecasting: A time-simultaneous fan chart application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 98-107.
    17. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2011. "Mortality density forecasts: An analysis of six stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 355-367, May.
    18. Li, Han & O’Hare, Colin & Zhang, Xibin, 2015. "A semiparametric panel approach to mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 264-270.
    19. Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
    20. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2017. "Cohort effects in mortality modelling: a Bayesian state-space approach," Papers 1703.08282, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01719216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.