IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00934217.html
   My bibliography  Save this paper

Flexibility assessment in nuclear energy dominated systems with increased wind energy shares

Author

Listed:
  • Rodica Loisel

    (LEMNA - Laboratoire d'économie et de management de Nantes Atlantique - IEMN-IAE Nantes - Institut d'Économie et de Management de Nantes - Institut d'Administration des Entreprises - Nantes - UN - Université de Nantes)

  • David Shropshire

    (IET - JRC Institute for Energy and Transport - JRC - European Commission - Joint Research Centre [Petten])

  • Christian Thiel

    (IET - JRC Institute for Energy and Transport - JRC - European Commission - Joint Research Centre [Petten])

  • Arnaud Mercier

    (IET - JRC Institute for Energy and Transport - JRC - European Commission - Joint Research Centre [Petten])

Abstract

This study analyses the system integration of wind energy in terms of load balancing and power plants scheduling. The case study is the French power system, which relies on high rates of nuclear power, representing 78% in the total generation (2008). The study evaluates the ability of nuclear reactors to follow the load under several configurations of power plants in 2030 with at least 28 GW wind power representing 11% in the total generation. A dynamic optimization dispatching model is built with a detailed discrete-time formulation under the nuclear power ramp up and down constraints. Results show that operating the French power system with high infeed of wind power by 2030 seems technically feasible but relies heavily on the capacity of nuclear reactors to follow variations, on energy storage to insure flexibility and on the market capacity to allow generators to adapt continuously to the demand. Simulations show that balancing the wind power variation is less a matter of installing more flexible capacities, as load factors might decrease and reduce the investors' interest when prices are relatively low. Balancing becomes more an issue of ramping rates and unit scheduling, power market regulation and real-time market interactions with the day-ahead and intra-day markets.

Suggested Citation

  • Rodica Loisel & David Shropshire & Christian Thiel & Arnaud Mercier, 2014. "Flexibility assessment in nuclear energy dominated systems with increased wind energy shares," Working Papers hal-00934217, HAL.
  • Handle: RePEc:hal:wpaper:hal-00934217
    Note: View the original document on HAL open archive server: https://hal.science/hal-00934217
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00934217/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Traber, Thure & Kemfert, Claudia, 2011. "Gone with the wind? -- Electricity market prices and incentives to invest in thermal power plants under increasing wind energy supply," Energy Economics, Elsevier, vol. 33(2), pages 249-256, March.
    2. Linares, Pedro & Conchado, Adela, 2013. "The economics of new nuclear power plants in liberalized electricity markets," Energy Economics, Elsevier, vol. 40(S1), pages 119-125.
    3. Loisel, Rodica & Mercier, Arnaud & Gatzen, Christoph & Elms, Nick & Petric, Hrvoje, 2010. "Valuation framework for large scale electricity storage in a case with wind curtailment," Energy Policy, Elsevier, vol. 38(11), pages 7323-7337, November.
    4. Göransson, Lisa & Johnsson, Filip, 2009. "Dispatch modeling of a regional power generation system – Integrating wind power," Renewable Energy, Elsevier, vol. 34(4), pages 1040-1049.
    5. Farahmand, H. & Doorman, G.L., 2012. "Balancing market integration in the Northern European continent," Applied Energy, Elsevier, vol. 96(C), pages 316-326.
    6. Purvins, Arturs & Zubaryeva, Alyona & Llorente, Maria & Tzimas, Evangelos & Mercier, Arnaud, 2011. "Challenges and options for a large wind power uptake by the European electricity system," Applied Energy, Elsevier, vol. 88(5), pages 1461-1469, May.
    7. Pandžić, Hrvoje & Kuzle, Igor & Capuder, Tomislav, 2013. "Virtual power plant mid-term dispatch optimization," Applied Energy, Elsevier, vol. 101(C), pages 134-141.
    8. Thiel, Christian & Perujo, Adolfo & Mercier, Arnaud, 2010. "Cost and CO2 aspects of future vehicle options in Europe under new energy policy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 7142-7151, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loisel, Rodica & Pasaoglu, Guzay & Thiel, Christian, 2014. "Large-scale deployment of electric vehicles in Germany by 2030: An analysis of grid-to-vehicle and vehicle-to-grid concepts," Energy Policy, Elsevier, vol. 65(C), pages 432-443.
    2. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, George, 2013. "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy," Applied Energy, Elsevier, vol. 105(C), pages 138-154.
    3. Shropshire, David & Purvins, Arturs & Papaioannou, Ioulia & Maschio, Isabella, 2012. "Benefits and cost implications from integrating small flexible nuclear reactors with off-shore wind farms in a virtual power plant," Energy Policy, Elsevier, vol. 46(C), pages 558-573.
    4. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    7. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    8. Li, Zhe & Ouyang, Minggao, 2011. "A win-win marginal rent analysis for operator and consumer under battery leasing mode in China electric vehicle market," Energy Policy, Elsevier, vol. 39(6), pages 3222-3237, June.
    9. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    10. Varga, Bogdan Ovidiu, 2013. "Electric vehicles, primary energy sources and CO2 emissions: Romanian case study," Energy, Elsevier, vol. 49(C), pages 61-70.
    11. Harrison Fell & Daniel T. Kaffine, 2014. "A one-two punch: Joint effects of natural gas abundance and renewables on coal-fired power plants," Working Papers 2014-10, Colorado School of Mines, Division of Economics and Business.
    12. Valeria Di Cosmo & Laura Malaguzzi Valeri, 2018. "How Much Does Wind Power Reduce $$\text {CO}_{2}$$ CO 2 Emissions? Evidence from the Irish Single Electricity Market," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(3), pages 645-669, November.
    13. Quentin Perrier, 2017. "The French Nuclear Bet," Working Papers 2017.18, Fondazione Eni Enrico Mattei.
    14. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    15. Sun, Chuanwang & Zhan, Yanhong & Du, Gang, 2020. "Can value-added tax incentives of new energy industry increase firm's profitability? Evidence from financial data of China's listed companies," Energy Economics, Elsevier, vol. 86(C).
    16. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    17. Rubin, Ofir D. & Babcock, Bruce A., 2013. "The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets," Energy, Elsevier, vol. 59(C), pages 676-688.
    18. Pandžić, Hrvoje & Morales, Juan M. & Conejo, Antonio J. & Kuzle, Igor, 2013. "Offering model for a virtual power plant based on stochastic programming," Applied Energy, Elsevier, vol. 105(C), pages 282-292.
    19. Paraschiv, Florentina & Erni, David & Pietsch, Ralf, 2014. "The impact of renewable energies on EEX day-ahead electricity prices," Energy Policy, Elsevier, vol. 73(C), pages 196-210.
    20. Kuo, Cheng-Chien, 2010. "Wind energy dispatch considering environmental and economic factors," Renewable Energy, Elsevier, vol. 35(10), pages 2217-2227.

    More about this item

    Keywords

    Power plants dispatching; flexibility; wind; nuclear; ramping rates;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00934217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.