IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00796215.html
   My bibliography  Save this paper

Dominances on fuzzy variables based on credibility measure

Author

Listed:
  • Christian Tassak

    (MASS - Laboratoire de Mathématiques appliquées aux Sciences Sociales - Université de Douala)

  • Jules Sadefo-Kamdem

    (LAMETA - Laboratoire Montpelliérain d'Économie Théorique et Appliquée - UM1 - Université Montpellier 1 - UPVM - Université Paul-Valéry - Montpellier 3 - INRA - Institut National de la Recherche Agronomique - Montpellier SupAgro - Centre international d'études supérieures en sciences agronomiques - UM - Université de Montpellier - CNRS - Centre National de la Recherche Scientifique - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier)

  • Louis Aimé Fono

    (MASS - Laboratoire de Mathématiques appliquées aux Sciences Sociales - Université de Douala)

Abstract

This paper studies three notions of fuzzy dominance based on credibility measure, namely, the fuzzy mean-risk dominance, the rst credibilistic dominance and the second credibilistic dominance. More precisely, we introduce and examine some properties of the Fuzzy Lower Partial Moments (FLPM) of a fuzzy variable and, we deduce the Fuzzy Kappa index (FK) of a fuzzy variable, that is, a risk-adjusted performance measure of an asset or a portfolio with fuzzy return. Based on the aforementioned notion, we introduce the fuzzy mean-risk dominance of two fuzzy variables and we characterize it in three speci c and interesting cases. We recall the rst credibilistic dominance and the second credibilistic dominance for fuzzy variables introduced earlier by Peng et al. [20]. We characterize the rst credibilistic dominance and determine some of its properties. We introduce and characterize the notion of crossing points of distributions of two fuzzy numbers and use them to characterize the second credibilistic dominance for fuzzy numbers. We justify that the rst credibilistic dominance is stronger than the fuzzy mean-risk dominance and the second credibilistic dominance, and neither of these two later implies the other.

Suggested Citation

  • Christian Tassak & Jules Sadefo-Kamdem & Louis Aimé Fono, 2012. "Dominances on fuzzy variables based on credibility measure," Working Papers hal-00796215, HAL.
  • Handle: RePEc:hal:wpaper:hal-00796215
    Note: View the original document on HAL open archive server: https://hal.science/hal-00796215
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00796215/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bawa, Vijay S., 1975. "Optimal rules for ordering uncertain prospects," Journal of Financial Economics, Elsevier, vol. 2(1), pages 95-121, March.
    2. Darinka Dentcheva & Andrzej Ruszczynski, 2004. "Optimization Under First Order Stochastic Dominance Constraints," GE, Growth, Math methods 0403002, University Library of Munich, Germany, revised 07 Aug 2005.
    3. S. M. Sunoj & S. S. Maya, 2008. "The role of lower partial moments in stochastic modeling," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 223-242.
    4. Brogan, Anita J. & Stidham Jr., Shaler, 2008. "Non-separation in the mean-lower-partial-moment portfolio optimization problem," European Journal of Operational Research, Elsevier, vol. 184(2), pages 701-710, January.
    5. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    6. Sadefo Kamdem, Jules & Tassak Deffo, Christian & Fono, Louis Aimé, 2012. "Moments and semi-moments for fuzzy portfolio selection," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 517-530.
    7. Huang, Dashan & Zhu, Shushang & Fabozzi, Frank J. & Fukushima, Masao, 2010. "Portfolio selection under distributional uncertainty: A relative robust CVaR approach," European Journal of Operational Research, Elsevier, vol. 203(1), pages 185-194, May.
    8. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dentcheva Darinka & Stock Gregory J. & Rekeda Ludmyla, 2011. "Mean-risk tests of stochastic dominance," Statistics & Risk Modeling, De Gruyter, vol. 28(2), pages 97-118, May.
    2. Christian Deffo Tassak & Louis Aimé Fono & Jules Sadefo-Kamdem, 2019. "Fuzzy lower partial moment and Mean-risk Dominance: An application for poverty Measurement," Working Papers hal-02433422, HAL.
    3. Dentcheva, Darinka & Ruszczynski, Andrzej, 2006. "Portfolio optimization with stochastic dominance constraints," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 433-451, February.
    4. Andrey Lizyayev, 2010. "Stochastic Dominance Efficiency Analysis of Diversified Portfolios: Classification, Comparison and Refinements," Tinbergen Institute Discussion Papers 10-084/2, Tinbergen Institute.
    5. Kallio, Markku & Dehghan Hardoroudi, Nasim, 2018. "Second-order stochastic dominance constrained portfolio optimization: Theory and computational tests," European Journal of Operational Research, Elsevier, vol. 264(2), pages 675-685.
    6. Andrey Lizyayev, 2012. "Stochastic dominance efficiency analysis of diversified portfolios: classification, comparison and refinements," Annals of Operations Research, Springer, vol. 196(1), pages 391-410, July.
    7. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Wang, 2002. "Consistent testing for stochastic dominance: a subsampling approach," CeMMAP working papers 03/02, Institute for Fiscal Studies.
    8. Dipankar Mondal & N. Selvaraju, 2022. "Convexity, two-fund separation and asset ranking in a mean-LPM portfolio selection framework," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 225-248, March.
    9. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    10. Markus Haas, 2007. "Do investors dislike kurtosis?," Economics Bulletin, AccessEcon, vol. 7(2), pages 1-9.
    11. Kuan Xu & Gordon Fisher, 2006. "Myopic loss aversion and margin of safety: the risk of value investing," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 481-494.
    12. Cristiano Arbex Valle & Diana Roman & Gautam Mitra, 2017. "Novel approaches for portfolio construction using second order stochastic dominance," Computational Management Science, Springer, vol. 14(2), pages 257-280, April.
    13. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    14. Anderson, Gordon & Leo, Teng Wah, 2021. "Sufficient conditions for jth order stochastic dominance for discrete cardinal variables, and their formulae," Economics Letters, Elsevier, vol. 209(C).
    15. Lizyayev, Andrey & Ruszczyński, Andrzej, 2012. "Tractable Almost Stochastic Dominance," European Journal of Operational Research, Elsevier, vol. 218(2), pages 448-455.
    16. Cristiano Arbex Valle & John E Beasley, 2024. "Subset SSD for enhanced indexation with sector constraints," Papers 2404.16777, arXiv.org.
    17. Stelios Arvanitis & Mark Hallam & Thierry Post & Nikolas Topaloglou, 2019. "Stochastic Spanning," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 573-585, October.
    18. Franklin G. Mixon Jr. & Richard J. Cebula, 2022. "Property Rights Freedom and Innovation: Eponymous Skills in Women's Gymnastics," Journal of Sports Economics, , vol. 23(4), pages 407-430, May.
    19. Darinka Dentcheva & Gabriela Martinez & Eli Wolfhagen, 2016. "Augmented Lagrangian Methods for Solving Optimization Problems with Stochastic-Order Constraints," Operations Research, INFORMS, vol. 64(6), pages 1451-1465, December.
    20. Tobias Thomas & Dominik Straub & Fabian Tatai & Megan Shene & Tümer Tosik & Kristian Kersting & Constantin A. Rothkopf, 2024. "Modelling dataset bias in machine-learned theories of economic decision-making," Nature Human Behaviour, Nature, vol. 8(4), pages 679-691, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00796215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.