IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00243014.html
   My bibliography  Save this paper

Two -person zero-sum stochastic games with semicontinuous payoff

Author

Listed:
  • Rida Laraki

    (CECO - Laboratoire d'économétrie de l'École polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique)

  • A.P. Maitra

    (CECO - Laboratoire d'économétrie de l'École polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique)

  • William Sudderth

    (CECO - Laboratoire d'économétrie de l'École polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique)

Abstract

Consider a two-person zero-sum stochastic game with Borel state space S, compact metric action sets A, B and law of motion q such that the integral under q of every bounded Borel measurable function depends measurably on the initial state s and continuously on the actions (a,b) of the players. Suppose the payoff is a bounded function f of the infinite history of states and actions such that f is measurable for the product of the Borel sigma-fields of the coordinate spaces and is lower semicontinuous for the product of the discrete topologies on the coordinate spaces. Then the game has a value and player II has a subgame perfect optimal strategy.

Suggested Citation

  • Rida Laraki & A.P. Maitra & William Sudderth, 2005. "Two -person zero-sum stochastic games with semicontinuous payoff," Working Papers hal-00243014, HAL.
  • Handle: RePEc:hal:wpaper:hal-00243014
    Note: View the original document on HAL open archive server: https://hal.science/hal-00243014
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00243014/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mertens, J.-F. & Parthasarathy, T., 1987. "Equilibria for discounted stochastic games," LIDAM Discussion Papers CORE 1987050, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Mertens, Jean-Francois, 2002. "Stochastic games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 47, pages 1809-1832, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank H. Page & Myrna H. Wooders, 2009. "Endogenous Network Dynamics," Working Papers 2009.28, Fondazione Eni Enrico Mattei.
    2. Guilherme Carmona, 2002. "Monetary trading: an optimal exchange system," Nova SBE Working Paper Series wp420, Universidade Nova de Lisboa, Nova School of Business and Economics.
    3. Roger Lagunoff, 2005. "Markov Equilibrium in Models of Dynamic Endogenous Political Institutions," Game Theory and Information 0501003, University Library of Munich, Germany.
    4. Johannes Horner & Takuo Sugaya & Satoru Takahashi & Nicolas Vieille, 2009. "Recursive Methods in Discounted Stochastic Games: An Algorithm for delta Approaching 1 and a Folk Theorem," Cowles Foundation Discussion Papers 1742, Cowles Foundation for Research in Economics, Yale University, revised Aug 2010.
    5. Jinhui H. Bai & Roger Lagunoff, 2011. "On the Faustian Dynamics of Policy and Political Power," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(1), pages 17-48.
    6. Duggan, John & Kalandrakis, Tasos, 2012. "Dynamic legislative policy making," Journal of Economic Theory, Elsevier, vol. 147(5), pages 1653-1688.
    7. Dinah Rosenberg & Eilon Solan & Nicolas Vieille, 2003. "The MaxMin value of stochastic games with imperfect monitoring," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(1), pages 133-150, December.
    8. Nicolas Vieille, 2010. "Recursive Methods in Discounted Stochastic Games: An Algorithm for - 1 and a Folk Theorem," Post-Print hal-00543616, HAL.
    9. János Flesch & Gijs Schoenmakers & Koos Vrieze, 2009. "Stochastic games on a product state space: the periodic case," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(2), pages 263-289, June.
    10. Dinah Rosenberg & Eilon Solan & Nicolas Vieille, 1999. "Stopping Games with Randomized Strategies," Discussion Papers 1258, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    11. Abraham Neyman & Sylvain Sorin, 2010. "Repeated games with public uncertain duration process," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 29-52, March.
    12. János Flesch & Jeroen Kuipers & Ayala Mashiah-Yaakovi & Gijs Schoenmakers & Eilon Solan & Koos Vrieze, 2010. "Perfect-Information Games with Lower-Semicontinuous Payoffs," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 742-755, November.
    13. Vieille, Nicolas, 2002. "Stochastic games: Recent results," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 48, pages 1833-1850, Elsevier.
    14. Eilon Solan, 2018. "The modified stochastic game," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(4), pages 1287-1327, November.
    15. János Flesch & Arkadi Predtetchinski, 2020. "Parameterized games of perfect information," Annals of Operations Research, Springer, vol. 287(2), pages 683-699, April.
    16. Anna Jaśkiewicz & Andrzej Nowak, 2011. "Stochastic Games with Unbounded Payoffs: Applications to Robust Control in Economics," Dynamic Games and Applications, Springer, vol. 1(2), pages 253-279, June.
    17. Abreu, Dilip & Manea, Mihai, 2012. "Markov equilibria in a model of bargaining in networks," Games and Economic Behavior, Elsevier, vol. 75(1), pages 1-16.
    18. Casilda Lasso de la Vega & Oscar Volij, 2020. "The value of a draw," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1023-1044, November.
    19. Abraham Neyman, 2002. "Stochastic games: Existence of the MinMax," Discussion Paper Series dp295, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    20. Laraki, Rida & Sorin, Sylvain, 2015. "Advances in Zero-Sum Dynamic Games," Handbook of Game Theory with Economic Applications,, Elsevier.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00243014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.